
A Simple Technique for Static Relocation of
Absolute Machine Code

BY GARY A K ILDALL
Digital Research
Pacific Grove, CA 93950

One principal difficulty with newly evolving computer
technology is that software generation tools generally lag
corresponding hardware facilities, thus forcing the software
engineer to resort to outmoded techniques to produce soft­
ware systems.

The purpose here is to present one area of difficulty—that
of a static program relocation—and to offer a simple solution
which can be applied to nearly any microcomputer software
environment where relocation is not supported by the manu­
facturer.

The need for static relocation arises most often in a situa­
tion where the software systems must be reconfigured in the
field. For example, data entry equipment manufacturers often
provide a range of optional peripherals which can be attached
to user’s equipment as processing requirements change. Each
peripheral usually requires a software “driver” which is device­
specific, and interfaces the device to the operation environ­
ment.

A common approach to software reconfiguration is to
arrange the individual translated peripheral drivers into distinct
machine code modules which can be selectively brought
together to form an integral system at the customer site.
In order to perform the field reconfiguration, each module is
translated so that it originates at location 0 in memory and,
when it is brought together with other modules, it is placed
at the next available memory location as the system is being
constructed. All machine code elements which are location
dependent must, of course, be altered to reflect the actual
locations that the driver occupies. Generally, the elements
which are affected are the addresses of branch destinations
and data addresses. If the locations of the affected addresses
in each module are known ahead of the system reconfigura­
tion, the module can be placed anywhere in the final memory
image.

Simple Static Relocation

The process of constructing an executable memory image
from a set of relocatable modules, as described above, is
called static relocation. Unfortunately, very few microcom­
puter manufacturers produce the address information with
their translator output which is required for the relocation
process. The method described below, however, can be applied
to the output of most manufacturers’ absolute translators to
derive the necessary relocation information. In order to be
specific, the Intel 8080 microcomputer is used in the
discussion with the understanding that the concepts can be
easily extended to differing architectures.

The Intel 8080 microcomputer has a 64K (65536 bytes)
memory space which can be thought of as 256 “pages” of 256

bytes per page. Data and instructions are intermixed in this
memory space, and are addressed with a 16-bit address
operand which can be divided into an 8-bit (high-order) page
address (0-255), and an 8-bit (low-order) address within a
page. Typical 8080 instructions which can use these address
operands are shown in Figure 1, where PA denotes the page
address, and AWP denotes the address within a page. In
general, a machine code memory image consists of instruc­
tions, instruction addresses, and data items. The instructions
and data items are independent of the actual location at
which the module finally resides. Further, only a subset of the
instruction addresses are dependent upon the module location.
That is, a load instruction may reference a buffer address
which is fixed outside the relocatable module, in which case it
does not change when the module is moved into position. If
the address references a branch location or data item within
the module, then the value of PA, AWP, or both, must be
biased by fixed values, dependent upon the final position of
the module in the resulting configuration.

MVI A, PA Move immediate to A
MVI c. AWP Move immediate to C
LXI D , AWP PA Load DE with address
JMP AWP PA Jump to address

Figure 1. Typical 8080 Instructions

A simpler form of relocation, called “page boundary
relocation,” is usually sufficient for field reconfiguration.
In this case, the module is relocated to a page boundary
so that only the page address (PA) need be changed to perform
the relocation, since the address within a page (AWP) remains
constant.

Page Boundary Relocation

In its simplest form, page boundary relocation can be
accomplished by constructing two parallel memory images
for each module. The first, called the “relative-0” image is
created by translating the module for execution at location 0.
The second, called the “relative-1” image is produced by
translating the module for execution at page 1 (address 256).
The relative-0 and relative-1 memory images c a n then be
compared to determine the high-order address elements which
must change when the module is moved to its final page
boundary location. Figures 2a and 2b show a simple program
segment assembled as relative-0 and relative-1 images. The
differences in the machine code images are circled, and are
thus the high-order addresses which must be biased when the
module is moved. Figure 2c shows the same program segment
assembled at page 5. Note that if the circled address fields in
the ralative-0 image are biased by an amount 5 (corresponding
to page boundary 5), they result in the proper values for the
relocated program.

Page 10 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Number 22

0000 org OOOh relative 0 assembly;
0000 3E 00 start :: mvi a,d1 shr 8 ;page address to a

0002 OEOA mvi c,d1 and Offh;address in page

0004 110A 00 Ixi d,d1 ;full address to d, e

0007 C30000 jmp start

data area

000A d1: ds 2 ;two unfilled

OOOC 00 db 0 ;one filled element

0 0 0 D end

R e l a t i v e - 0 H e x File:

0A|000q00(3E000E0A110A00C30000IC2
00F3O O O C 00

oooolooloo

Figure 2a. Relative-0 Assembly

0100 org 100h ,-relative 1 assembly

0100 3E01 start: mvi a,d1 shr 8 page address to a

0102 OEOA mvi c,d1 and 0ffh;address in page

0104 110A01 Ixi d,d1 ;full address to d,e

0107 C30001 jmp

data area

start

0 1 OA d l: ds 2 ;two unfilled

0 1 OC

01OD

00 db

end

0 ;one filled element

R e l a t i v e - 1 H e x F i le:

0A)0100]00j3E010E0A110A01C30001jBE
0 1 0 1 0 C 0 0 0 0 F 2
ooloooolooloo

Figure 2b. R elative-1 Assembly

0500 org 500h ;assembly at page 5

0500 3E05 start: mvi a,d1 shr 8 page address to a

0502 OEOA mvi c,d1 and Offh ;address in page

0504 110A 05 Ixi d,d1 ;full address to d,e

0507 C 30005 jmp start

; data area

d l : ds 2 ;two unfilled

050C 00 db 0 ;one filled element

0 5 0 D end

0AO5Q0|Oq3E05OE0A110A05C30005iAE
050C)0000EE
ooooboloo

Figure 2c. Assembly at Page 5

The program which actually performs the relocation
process is a simple modification of an absolute loader. The
translator output for an 8080 microcomputer is a “hex
format” file, containing a sequence o f absolute records which
give a load address and byte values to be stored starting at
the load address. The exact format o f each record, shown in
Figure 3, begins with a colon (:) followed immediately by
a two digit record length (RL) and 4 -digit load address (LA).
The 2-digit record type (RT) is always zero for absolute
records, and is followed by RL pairs of hexadecimal digits to
be placed at LA through LA+RL—1 in memory. The record
terminates with a pair of checksum digits: if the byte values
(hexadecimal digit pairs) are summed, starting immediately
after the colon, and, continuing through the end of the record,
including the checksum byte, then the sum should be zero
when computed with an 8 -bit counter. The checksum byte
is included as an error detection mechanism. The last record
of a hex file is denoted by a record length of 00.

I jnn|aaaai |t t |d ld 2 .. .dnjcc |

nn — record length 01 -FF
aaaa load address 0000-FFFF
tt — record type = 00
dl — data byte 1
d2 — data byte 2

dn — data byte nn
cc — checksum byte

Figure 3. Hex File Format

An absolute loader reads each record o f the hex file, and
loads the byte values at the load address specified by LA for
the next RL bytes, as shown in the algorithm of Figure 4. The
notation used in this algorithm is that of Knuth [K n.], where
each step is labeled with a step name (AI. . . A 16), followed
by a comment describing the action of the step. The action
itself is a series of assignments of expressions to variables, and
conditional control transfers. The algorithm begins at step AI,
and scans for the beginning colon for each record. When
found, the algorithm reads the record length and, if zero,
terminates the load operation. If the recrod length is not zero,
the load address is read followed by the record type (which
should be zero). The algorithm then loops between steps A6
and A12, reading successive bytes to memory while computing
the checksum. When the entire record has been loaded, the
final checksum byte is added, which should result in a zero
value. Upon completion of the algorithm of Figure 4, the
entire hex file has been read and loaded to an absolute loca­
tion in memory.

The algorithm of Figure 5 is a simple extension of the pre­
vious absolute loader, which reads two successive hex files.
The first hex file is the relative-0 machine code, produced by
translating the module for execution at location 0. The second
hex file is the relative-1 machine code, resulting from the
module translation when originated at location 256 (100 in
hexadecimal). The first part of the algorithm, given by steps
AI through A16 is similar to that of Figure 4, except that the
data is loaded to address LA+PG*256 which effectively
moves the module to the page boundary given by PG rather
than absolute address LA.

Note: nextchar reads the next ASCII character

nextbyte reads the next pair of digits
nextaddr reads the next pair of bytes

CS is the checksum accumulator (8 -bits)
R L is the record length (8-bits)

LA is the load address (16-bits)
M [x] is memory location x (8-bits)

A1 [scan fo r :] if nextchar £ " : " go to A1
A2 [set checksum] CS : = 0
A3 [get length] R L : = nextbyte
A4 [last record?] if R L = 0 go to A 16
A5 [set address] LA : = nextaddr
A6 [set type] R T : = nextbyte
A7 [load bytes] if R L = 0 go to A13
A8 [get byte] b : = nextbyte
A9 [store byte] M [L A] : = b
A 10 [chec ksum] CS : = CS + b
A11 [next addr] LA : = LA + 1
A1 2 [count length] R L : = R L — 1, go to A 7
A 13 [checksum] CS : = CS + nextbyte
A 14 [total ok?] if CS = 0 go to A1
A 15 [check error] halt, "checksum error"
A 16 [normal end] halt, "tape read ok"

Figure 4. Absolute Loader Algorithm

Number 22 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025 Page 11

67

Upon reaching step A16, the module has been loaded into
memory at page PG but is translated for execution at loca­
tion 0 and thus would (most likely) execute improperly, since
the high order branch and data addresses must be biased by an
amount PG. Thus, steps R1 through R19 read the relative-1
hex file to determine the addresses which must change. These
steps are similar to AI through A16, except the input data is
compared with memory for differences, rather than actually
placed in memory. In step R5, the load address is read as
before but, since the relative -1 machine code is biased by one
page, the effective address must be reduced by 256 bytes.
Step R9 compared the data loaded in the first phase with the
data read in the second phase: if the data is the same, then the
element is invariant in the relocation process. If the data dif­
fers, then it must have been due to the difference in the
relative-0 and the relative-1 memory images. Further, this
difference must be exactly 1 since differences occur only in
the high-order address fields; otherwise an error occurs, and
the module cannot be relocated. When a relocatable element
is found, the original value loaded and relocated in phase 1
must be biased by an amount PG in step R l l . Upon comple­
tion of the second phase, the algorithm halts at step R19 with
the high order addresses altered by the proper amount in the
relocated module. Note that the algorithm given in Figure 5,
when applied to the relative-0 file of Figure 2a, followed by
the relative-1 file of Figure 2b, produces the relocated
machine code of Figure 2c, when page boundary PG=5 is
used.

Note: nextchar, nextbyte, nextaddr,
CS, RL, LA, and M are identical to
Figure 4. PG is the page number
where the relocated module will reside.

A1 [scan for :] if nextchar + " :" go to A 1
A2 [set checksum] CS : = 0
A3 [get length] R L : = nextbyte
A4 [last record?] if RL = 0 go to A16
A5 [set address] LA : = nextaddr
A6 [set type] RT : = nextbyte
A7 [load bytes] if RL = 0 go to A13
A8 [get byte] b : = nextbyte
A9 [store byte] M [LA + PG * 256] : = b
A10 [checksum] CS : = CS + b
A 1 1 [next addr] LA : = LA + 1
A 12 [count length] RL : = RL — 1, go to A7
A13 [checksum] CS : = CS + nextbyte
A14 [total ok?] if CS = 0 go to A1
A15 [check error] halt, "checksum error"
A16 [end rel-0] go to R1

R1 [scan for :] if nextchar + " : " go to R 1
R2 [set checksum] CS : = 0
R3 [get length] R L : = nextbyte
R4 [last record?] if RL = 0 go to R19
R5 [set address] LA : = nextaddr + 256 x (PG — 1)
R6 [set type] RT : = nextbyte
R7 [record done?] if RL = 0 go to R15
R8 [compare data] b : = nextbyte
R9 [data same?] if b = M [LA] go to R 12
R10 [pagediff 1?] if b + M [LA] + 1 go to R18
R11 [relocate] M [LA] : = M [LA] + PG
R12 [checksum] CS : = CS + b
R13 [next address] LA : = LA + 1
R14 [count length] RL : = RL — 1, go to R7
R15 [checksum] CS : = CS + nextbyte
R16 [total ok?] if CS = 0 go to R1
R17 [check error] halt, "checksum error"
R18 [reloc error] halt, "relocation error"
R19 [end rel-1] halt, "relocation done"

Figure 5. Relocating Loader Algorithm

The algorithm of Figure 5 can be easily translated to an
appropriate assembly or high-level language program to
perform this relocation process.

The processing of Figure 5 can be used to produce a more
compact form of the relocatable module by building a “bit
vector” which tabulates the addresses which require relocation,
rather than actually performing the relocation process. That is,
in step R l l the address LA must be biased by an amount PG
for proper execution when the module originates at address
PG*256. Thus, on the first pass, the data can be read to
memory and, upon completion of the pass, a bit vector is
constructed which has one bit position for each address within
the module. Before starting step R l, the entire bit vector is
zeroed to indicate that no addresses require relocation. As the
second phase processing proceeds, each relocation address
determined in step R l 1 can be “marked” by setting the cor­
responding position of the bit vector. Upon completion of the
algorithm, the bit vector contains zeroes in the positions cor­
responding to addresses which are invariant over the relocation,
and ones in the positions which require biasing by an amount
PG. The entire relocatable module can then be saved for later
static relocation.

Given that the relative-0 memory image has been saved
along with the relocation bit vector, the page boundary
relocation can be simply accomplished by reading the memory
image to its relocated page address PG. The bit vector is then
read and processed: for each bit position which is set, the
value PG must be added to the corresponding element which
was previously loaded. Note that this extension to the basic
algorithm of Figure 5 is included only for compact represen­
tation, and produces exactly the same memory image as the
original algorithm.

A Case In Point

The following situation shows a case where page boundary
relocation is useful. The CP/M operating system [Ki] is a
simple small computer diskette based software system, which
implements a file management and program loading facility for
microcomputer development. The operating system is arranged
as a set of modules which are loaded into memory when the
computer system is started. User programs are then loaded
into memory from the diskette and, because of memory con­
straints, must overlay non-essential portions of the CP/M sys­
tem to reclaim storage for program and data areas. In order to
allow these areas of memory to be reclaimed, the CP/M system
is loaded into the high addresses of the memory space, and the
user programs are loaded into the low addresses. Thus, the user
programs can overlay the high addresses of memory when
necessary and, upon completion, cause the CP/M system to
be brought back from the diskette for the next operation.

Given that relocation is not supported by the manufacturer,
this memory organization presents a fundamental difficulty:
each CP/M operating system must be tied directly to the
memory size. If the user of CP/M owns a computer system
with 16K bytes of memory then a 16K version of CP/M must
be supplied. If the user adds memory to enhance system
capabilities, a different version of CP/M must be supplied to
support the larger memory space.

In order to overcome this difficulty, the CP/M system can
be reconfigured in the field to accomodate the increased mem­
ory using the page boundary relocation technique described
above. In particular, each user receives a 16K version of CP/M
(the smallest amount of memory which is useful for CP/M
operation), along with a program which implements the recon­
figuration. The user may optionally execute the program
which rebuilds the CP/M system, according to the existing
memory size, and places the relocated memory image back on
the diskette, ready for subsequent loading.

Page 12 Dr. Dobb's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94 025 Number 22

The CP/M debugger program, called the Dynamic
Debugging Tool (DDT), also resides in the upper portions of
memory so that it can co-exist with the programs under test.
Again, the area in which DDT is loaded depends upon the
current memory configuration, and thus page boundary
relocation is performed each time the DDT program is brought
into memory. The increased elapsed time for relocation of
DDT is negligible when compared to an absolute load, as long
as the bit vector technique of the previous section is used.

Restrictions

It should be noted that the technique described here is
by no means a complete linking loader: no address resolution
is provided between modules, and no load-time address
arithmetic is allowed. Sets of modules which co-exist in
an integral system must communicate through instruction
and data addresses. Using the technique presented here, the
communication must be performed through dedicated
absolute addresses for data items. Further, instruction addresses
must be established through a “ root module” which contains
a jump vector with vector elements for each possible module
which could be configured in a final system.

Address arithmetic is often useful when combining modules.
In the simple page boundary relocation described above,
all address arithmetic must be performed at assembly or
compile time, and must consist only of simple operations
which involve a fixed positive or negative offset from a base
address, or a shift or logical and operation which extracts the
8-bit page address of a full 16-bit address. A relocation
error will occur, for example, if an 8 -bit immediate operand
instruction is obtained from a 7-bit right shift rather than an
8 -bit right shift of an address quantity.

In spite of these shortcomings, the technique has particular
advantages in being independent of a manufacturer’s capa­
bilities, whims, and fancies. All language processors must
eventually produce an absolute memory image for execution
on the target machine, and thus the relocation process
presented here will continue to operate when new software
tools are introduced.

Acknowledgements

The author would like to point out that the techniques
presented here, although useful, are most likely not original
or particularly inventive. In fact, at least one individual,
Bruce VanNatta of IMS Associates, San Leandro, California,
has independently applied the methods to produce relocatable
PL/M programs. There are most certainly many other software
designers who have approached the relocation problem in a
similar fashion.

References

Kildall, G., Microcomputer Software Design: A Checkpoint.
Proceedings of the Fall Joint Computer Conference, 1975.

Knuth, D., The A rt o f Computer Programming. Volume I: Funda­
mental Algorithms. Addison-Wesley, Reading, MA, 1975.

Number 22 Dr. Dobb's Journal o f Computer Calisthen

FASTER DATA ENTRY FOR SC/MP

Dear Dr. Dobbs, Received: 78 Jan 16

Using the SC/MP kit (actually it is called Introkit this side
of the Big Lake) with the keyboard addition I often cursed the
program entry method as being somewhat slow. You have to
press MEM, TERM, then enter your data, and finally press
TERM again. That makes 5 keystrokes per byte where most
systems only use 3, i.e. two for the hex digits and one carriage
return. The enclosed program should solve this problem. All
should be self-explanatory except for a few details:

1. The initial data display is always 00,'the following (after
first TERM) shows true data read from memory.
2. Assembler syntax is not standard but from a home­
brewed ‘cross’ on an HP 9825A. The main difference is in
hex notation - I use xxH where National uses X’ or leading
zero.
3. The program is relocatable as only PC-relative jumps are
used (besides using SCMPKB which is assumed to start in
0000).

Best of all,
Erik Skovgaard
Nordlundsvej 10
DK-2650 Hvidovre
DENMARK

***** FSTKEY SCMPKB FAST DATA ENTRY ROUTINE *****

$$$$ Track 1 File « 6

1 ;ROUTINE FOR FAST ENTRY OF
2 [PROGRAMS USING SCMPKB SYSTEM
3 [JUST KEY IN BYTE AND PRESS TERM
4 [ADDRESS IS THEN AUTO INCREMENTED
5 [AFTER STORING THE BYTE.
6 ;ABORT KEY RETURNS CONTROL TO SCMPKB
7 ;PROGRAM ENTRY ADDR IS CIVEN IN LOC
8 ;CF15 (UPPER) AND 0F16 (LOWER)
9

10 0F30 C4 OF LDI 0FH ;P2=0F00
11 0F32 36 XPAH P2
12 OF 33 C400 LDI 0
13 0F35 32 XPAL P2
14 OF 36 C215 LD 15H(2) ;GET ADDRESS
15 OF 38 CA0E ST 0EH (2)
16 OF 3A C216 LD 16H(2)
17 0F3C CA0C ST 0CH(2)
IP OF 3E C400 LDI 0 ;CLEAR DATA
19 0F40 CA0D ST 0DH (2)
20 0F42 9 00B JMP "GODIS"
21 OF 44 C20D NUM: LD ODH(2)
22 0F46 IE RR ;SHIFT DIGIT
23 0F47 IE RR
24 OF 48 IE RR
25 0F49 IE RR
26 0F4 A D4F0 ANI FOH ;AND APPEND
27 OF 4C 58 ORE ;NEW DIGIT
28 0F4D CA0D ST ODH(2) ;SAVE RESULT
29 0F4F C401 GODIS: LDI 1
30 OF 51 37 XPAH P3 ;P3=DISP ROUTINE
31 OF 52 C43F LDI 3FH
32 0F54 33 XPAL P3
33 0F55 3F XPPC P 3 .•DISPLAY
34 0F56 9002 JMP "CMD" ;COMMAND RETURN
35 0F58 90EA JMP "NUM" ;NUMBER RETURN
36
37 ; COMMAND PROCESSING
38 ;ANY CMD EXCEPT ABT IS OK.
39
40 OF 5A C20E CMD: LD 0EH(2) ;P3=NEW ADDR
41 0F5C 37 XPAH P3
42 OF 5D C20C LD 0CH(2)
43 0F5F 33 XPAL P3
44 0F60 C20D LD ODH(2)
45 0F62 CF01 ST 01 (3) ;STORE BYTE, INCI
46 0F64 C300 LD 0(3) ;READ NEXT BYTE
47 0F66 CA0D ST ODH(2)
48 0F68 37 XPAH P 3 ;STORE NEW ADDR
49 0F69 CA0E ST 0EH (2)
50 0F6B 33 XPAL P3
51 0F6C CA0C ST 0CH(2)
52 0F6E 90DF JMP "GODIS" ;DISP NEW VALUES

NUM * 0F44
GODIS = 0F4F

CMD = 0F5A

& Orthodontia, Box E, Menlo Park, CA 94025 Page 13

69

