

 (ital

8086

RELOCATABLE OBJECT MODULE

FORMATS

An Intel Technical Specification

Order Number: 121748-001

Copyright@1981 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department

Intel Corporation

3065 Bowers Avenue

Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited

to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation

assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no

commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,

duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104:9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intelevision Multibus
CREDIT Intellec Multimodule
i iRMX Plug-A-Bubble
ICE iSBC PROMPT
iCS iSBX Promware
im Library Manager RMX/80
Insite MCS System 2000

Intel Megachassis UPI
intel Micromap uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A765/1082/3.5K DD

8986 Object Module Formats Version 4.0

TABLE OF CONTENTS

DOCUMENT CONTROL os oe oe eo @ e e e e e oe e @ eo e e oe e @ e e 2

TABLE OF CONTENTS . 2. 2. © «© © © © « © © © © © © © © © « e© 3

INTRODUCTION . 2. © © © © © © « © © © © © © e © © & © «© © &© 5

DEFINITION OF TERMS . 2. 2 © «© © © © © © © © © © © © © © © 9

MODULE SEMANTICS

MODULE IDENTIFICATION . . 2. « «© © © © © © © © © e «© © © 9

MODULE ATTRIBUTES . 2. « © © © e © © © © © © © © © © © © OY

SEGMENT DEFINITION . 2. 2 © © © e © © © © © © ©e © © © «© « Y

SEGMENT ADDRESSING . 2. © © © © © © © 0 2» © » © © © © « © 1G

SYMBOL DEFINITION . . 2. © «© © © «© © © © © © © © © © © « LO

DATA . 6 « © © © © © «© © © © © © © © © © © © © © © © © © Ll

INDICES . 6 © © © © © © © © © © © © © © © © © © « © © © 12

CONCEPTUAL FRAMEWORK FOR FIXUPS . 2. « © © © © © © © © e 13

MODULE SYNTAX

RECORD ORDER... .o ° eo 2 © © © © © 2» © © © © © © © & 22
INTRODUCTION to the RECORD FORMATS . 2. © © © © © © © ce ec e 24

RECORD FORMATS

T=MODULE HEADER RECORD . 2. 2. « © © e © © e © © © © © e 0 2h

L=-MODULE HEADER RECORD . 2. 6 © © © © «© © © © © © © © © © 27

R-MODULE HEADER RECORD . .. «© © © © © © © © © © © © © « 28

LIST OF NAMES RECORD . .« © © © © © © © © © © © © © © © © 3k

SEGMENT DEFINITION RECORD . 2. © 2 © © © © © © © e © © © 32

GROUP DEFINITION RECORD . ..« © © © © © © © © © © © e 36

TYPE DEFINITION RECORD . 2. 2. « © © © © © © c© © © © ce © « 4G

SYMBOL DEFINITION RECORDS

PUBLIC NAMES DEFINITION RECORD 2 0 © © © 6 © © © «© « 44

EXTERNAL NAMES DEFINITION RECORD 2 0 © © © © © © © © © AF

LOCAL SYMBOLS RECORD . 2... © © © © © © © © © © © © » 49

LINE NUMBERS RECORD . .« 2. 2 © © e © «© © © © © © © © »© OL

BLOCK DEFINITION RECORD . 2. © © e © e © © © © e 2 © » 93

BLOCK END RECORD . 2. « © © © © © © © © © «© © © © e «© « O36

DEBUG SYMBOLS RECORD . 2. « «© © © © © e © © e © © © © ce OF

DATA RECORDS

RELOCATABLE ENUNERATED DATA RECORD . 2 2 e© e© e © © © © “GD

RELOCATABLE ITERATED DATA RECORD . 2. © © © © © © © © © 62

PHYSICAL ENUMERATED DATA RECORD . 2. 2 «© ce e © © © » « 4

PHYSICAL ITERATED DATA RECORD . 2... © © © © © © ® © e AS

LOGICAL ENUMERATED DATA RECORD . 2. . « © © © © © e © « 99%

- LOGICAL ITERATED DATA RECORD . . . © «© © © © © « « © « A8

FIXUP RECORD . 2. « « «© © © © «© © © © © © © © © © © © e's 7G

OVERLAY DEFINITION RECORD ... © © © «© © © © © «© © © « 74

END RECORD . 2. © © © © e © © © © © © © © © © © © © © © « 746

REGISTER INITIALIZATION RECORD . 2. 2 © © © © © © © © © © V7

MODULE END RECORD . 2. «© «© «© © © © © © © © © © © © © © = 89

LIBRARY RECORDS

LIBRARY HEADER RECORD . 2. © 2 © © © © © © © © © © © « 82

LIBRARY MODULE NAMES RECORD . 2. »© ce © © © © «© © © «© © 83

LIBRARY MODULE LOCATIONS RECORDe © © © © © ce © 84

8086 Object Module Formats

1.
26
3.
4.

LIBRARY DICTIONARY RECORD
COMMENT RECORD . .

NUMERIC LIST OF RECORD TYPES
TYPE REPRESENTATIONS
SYNTAX DIAGRAMS .

EXAMPLES OF FIXUPS

e e

APPENDICES

Version 4.6

8885 Object Module Formats Version 4.9

INTRODUCTION

Here are the object record formats that define the object

language for the 8886 microprocessor. The 8686 object language is

the output of all lanquage translators with the 8886 as the tarqet

processor. The 8686 object language is input and output for object

lanquage processors such as_ linkers, locaters, librarians, and

debuggers.

The 8086 object module formats permit specification of

relocatable memory images that may be linked to one another.

Capabilities are provided that allow efficient use of the memory

mapping facilities of the 8986 microprocessor.

This section defines certain terms fundamental to 8986 R&L.

The terms are ordered not alphabetically, but So you can read

forward without forward references.

DEFINITION of. TERMS

OMF - acronym for Object Module Formats.

R&L - acronym for Relocation and Linkage.

MAS - acronym for Memory Address Space. The 8686 MAS is 1 megabyte

(1,048,576). Note that the MAS is distinguished from actual memory,

which may occupy only a portion of the MAS.

MODULE = an "inseparable" collection of object code and other

information produced by a translator or by the LINK~86 program.

When a distinction must be made,

T=-MODULE will denote a module created by a translator, such as PLM86

or ASM-85,

L-MODULE will denote a module created by (cross) LINK-86 V1.3 or

earlier versions, and

R=MODULE will denote a module created by (8086 based) LINK-86 from 1

or more constituent modules. (Note that modules are not “created"

in this sense by LOCATE-86; the output module from LOCATE-86 is

merely a transformation of the input module.)

Two observations about modules must be made:

1) Every module must have a name, So that the 83986 Librarian,

LIB86, has a handle- for the module for display to the user. (If

there is no need to provide a handle for LI886, the name may be

null.) Translators will provide names for T-modules, providing a

default name (possibly the file name or a null name) if neither

source code nor user specifies otherwise.

2) Every T-module ina collection of modules linked together

ought to have a different name, so that symbolic debugaing systems

(such as. ICE-86) can distinguish the various line numbers and local

8986 Object Module Formats Version 4.9

symbols. This restriction is not required by R&L, and is not
enforced by it.

LOGICAL SEGMENT = (LSEG) = A contiguous region of memory whose

contents are determined at translation-time (except for address-=

binding). Neither size nor location in MAS are necessarily
determined at translation-time: size, although partially fixed, may
not be final because the LSEG may be combined at LINK-time to other
LSEG's, forming a single LSEG; location in MAS is usually determined
at LOCATE=time (although some translators may produce “absolute"

object code, whose location is already determined).

FRAME = A contiguous region of 64K of MAS, beginning on a = paragraph
boundary (i.e., on a multiple of 16 bytes). This concept is useful
because the content of the four 8886 seqment registers define four
(possibly overlapping) FRAME's; no 16-bit address in the 8086 code

can access a memory location outside of the current four FRAME's.

An LSEG is constrained to be no greater than 64K, so that it
can fit in a FRAME. This means that any byte in an LSEG may be
addressed by a 16-bit offset from the base of a FRAME covering’ the
LSEG.

PSEG = This term is equivalent to FRAME. Some people vrefer "“PSEG" to

“FRAME” because the terms "PSEG" and “LSEG" reflect the “physical”
and “logical” nature of the underlying segments.

FRAME NUMBER = Every FRAME begins on a paragraph boundary. The

“paragraphs” in MAS can be numbered @,1,2,...,65535. These numbers,

each of which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER =- This term is equivalent to “FRAME NUMBER."

PSEG NUMBER =- This term is equivalent to “FRAME NUMBER.”

PIC = acronym for Position Independent Code. A PIC module is a module
where load addresses and register initialization values are

specified relative to seaqment and qroup bases. No fixups are
allowed.

LTL = acronym for Load=Time Locatable. An LTL module is similar to a
PIC module except that base fixups are allowed.

GROUP = a group is a collection of LSEG's defined at translation-time,
whose final locations in MAS have been constrained such that there
will be at least one FRAME which covers (contains) every LSEG in the
collection.

The notation “Gr A(X,Y,Z)" means that LSEG's X, Y and Z form a

qroup, and that the group's name is A.

The fact that X, Y and Z are all LSEG's in the same aroup does

not imply any ordering of X, Y and Z in MAS, nor does it imply any
contiguity between X, Y and Z.

8986 Object Module Formats Version 4.9

In the PIC/LTL case, an LSEG is not allowed to be in more’ than

one group (e.g. defining two groups such as Gr G1(A,C,B) and Gr

G2(B,C,D) in the same module is not legal). Otherwise an LSEG may

be in more than one group. The existence of groups such as Gl and

G2 is not sufficient to infer that A,B,C,D all lie within some

single FRAME, although they might.

CANONIC = any location in MAS is contained in exactly 4096 distinct

FRAME's; but one of these FRAME's can be distinguished in that it

has a higher FRAME NUMBER than any other FRAME. This distinguished

FRAME is called the canonic FRAME of the location.

Thus, if FOO is a symbol defining a memory location, one may

speak of the "“canonic FRAME of FOO", or of "FOO'S canonic FRAME”.

By extension, if S is any set of memory locations, then there exists

a unique FRAME which has the lowest FRAME NUMBER in the set of

canonic FRAME'S of the locations in S. This unique FRAME is’ called

the canonic’ FRAME of the set S. Thus, we may speak of the canonic

FRAME of an LSEG or of a Group of LSEG‘s.

SEGMENT NAME = LSEG's are assigned names at translation-time. These
names serve only 3 purposes:

1) they play a role at LINK-time in determining what LSEG‘s are

combined with what other LSEG‘s.

2) they may be used at LOCATE-time to desianate specific

LSEG'sS.

3) they are used in assembly source code to specify groups.

CLASS NAME = LSEG's may optionally be assiqned Class Names at

translation-time. Classes define a partition on ‘\.SEG's: two LSEG'‘'s

are in the same class iff they have the same Class Name.

R&L associates no semantics with specific Class Names; class

semantics are completely user-defined. Examples of Class Names

might be RED, BLUE, GREEN or ROM, RAM, DISPLAYMEMORY.

The uses of Class Names include the first 2 uses of Seqment

Names above; additionally, Class Names give the user the power to

identify many LSEG's by a single handle at LOCATE-time.

OVERLAY NAME = LSEG's may optionally be assigned an Overlay Name at

translation-time or at LINK=time. This name is specified when the

translator or LINK-86 is invoked, and all LSEG's within the same

module will be assigned the same Overlay Name.

An Overlay Name is similar to a Class Name in that it provides

a handle on user-defined equivalence classes of LSEG's. Unlike

Class Names, however, Overlay Names have semantics Known by the

LOCATE-86 program. (In brief, LSEG's in different overlays may be

"located" at overlapping MAS locations.)

8986 Object Module Formats Version 4.9

COMPLETE NAME = The “complete name" of an LSEG is defined to be _ the

three component identification consisting of the Seqment Name, Class

Name and Overlay Name. LSEG's from different modules will be
combined iff their Complete Names are identical.

8986 Object Module Formats Version 4.9

MODULE IDENTIFICATION

In order to determine that a file contains an object program, a

module header record will always be the first record in a module.

There are three kinds of header records and each provides a module

name. The additional functions of the header records are explained

below.

A module name may be generated during one of two processes:

translation or linking. A module that results from translation is

called a T=-MODULE. A T=MODULE will have a T=MODULE HEADER RECORD

(THEADR). A name may be _ provided in the THEADR record by a

translator. This name is then used to identify the source of all

symbols and line numbers found in the T-MODULE.

A module that results from linking is called an L=MODULE or an

R-MODULE. An L-MODULE will always have an L=-MODULE HEADER RECORD

(LHEADR). An R=MODULE will always have an R=-MODULE HEADER RECORD

(RHEADR). In the LHEADR record or the RHEADR record a name may also

be provided. This name is available for use aS a means of referring

to the module without using any of its constituent T-MODULE names.

An example would be two T-MODULES, A and B, linked together to form

R-MODULE C. R=MODULE C will contain two THEADR records and will

begin with an RHEADR record with the name C provided by the linker

as a directive from the user. The R=MODULE C can be referred to by

other tools such as the library manager without having to know about

the originating module's names, yet the oriainating module's names

are preserved for debugging purposes.

MODULE. ATTRIBUTES

In addition to an optional name, a module may have the

attribute of being a main program as well as having a specified

starting address. When linking multiple modules together, only one

module with the main attribute should be given. The linker EPS

specifies the result of finding two or more main modules.

If a module is not a main module yet has a starting address

then this value has been provided by a translator, possibly for

debuqging purposes. A starting address specified for a non-main

module could be the entry point of a procedure, which may ve loaded

and initiated independent of a main program.

In summary, modules may or may not be main as well aS may or

may not have a starting address.

SEGMENT DEFINITION

A module is defined as a collection of object code defined by a

sequence of records produced by a translator. The object code

8686 Object Module Formats Version 4.96

represents contiguous regions of memory whose contents are

determined at translation-time. These regions are called LOGICAL

SEGMENTS (LSEG‘S). A module must contain information that defines

the attributes of each LSEG. The SEGMENT DEFINITION RECORD (SEGDEF)

is the vehicle by which all LSEG information (name, length, memory
alignment, etc.) is maintained. The LSEG information is required
when multiple LSEG's are combined and when seqment addressability
(GROUPING, see below) is established. The SEGDEF records are

required to follow the first header record (THEADR, or LHEADR, or

RHEADR) .

a

SEGMENT ADDRESSING

The 8086 addressing mechanism provides segment base registers
from which a 64K byte region of memory, called a FRAME, may be
addressed. There is one code segment base register (CS), two data
segment base registers (DS, ES), and one stack seqment base register

(SS).

The possible number of LSEG's that may make up a memory image
far exceeds the number of available base registers. Thus, base

registers may require freguent loading. This would be the case in a
modular program with many small data and/or code LSEG's.

Hence the motivation to collect LSEG's together to form one

addressable unit that can be contained within a memory frame. The
name for this addressable unit is a GROUP and has been defined
earlier in the DEFINITION OF TERMS.

To allow addressability of objects within a GROUP to be
established, each GROUP must be explicitly defined in the module.
The GROUP DEFINITION RECORD (GRPDEF) provides a list of constituent

segments either by segment name or by segment attribute such as "the
‘segment defining symbol FOO" or “the segments with class name ROM".

The GRPDEF records within a module must follow all SEGDEF
records as GRPDEF records may reference SEGDEF records in defining a
GROUP. The GRPDEF records must also precede all other records but

header records as some R&L products must process them first. The

explicit ordering of records is given later.

SYMBOL, DEFINITION

Within a module there may be six different types of symbol
definition records. The necessity for these records is based on two
requirements: 1) references to externally defined symbols_- should
be resolved by equivalently defined symbols in another module
(linking) and 2) attributes of locally defined symbols and line
numbers snould be made available for debuqging purposes.

10

8686 Object Module Formats Version 4.80

The requirements for symbol definition records for module

linking is satisfied by the PUBLIC NAMES DEFINITION RECORD (PUBDEF) ,

the EXTERNAL NAMES DEFINITION RECORD (EXTDEF), and the TYPE

DEFINITION RECORD (TYPDEF). Their semantics will be explained

later.

The requirements for debugging information are satisfied by the

LOCAL SYMBOLS RECORD (LOCSYM), the LINE NUMBERS RECORD (LINNUM), the

DEBUG SYMBOLS RECORD (DEBSYM), the BLOCK DEFINITION RECORD (BLKDEF),

the BLOCK END RECORD (BLKEND), and the TYPE DEFINITION RECORD

(TYPDEF). The association of the line numbers and local symbols to

their original defining modules is essential and maintained by the

THEADR record as explained earlier.

DATA

The data that defines the memory image represented by a module

is maintained in six varieties of DATA records. The DATA records

are of three classes: relocatable, physical, and logical.

There are two Relocatable DATA records: RELOCATABLE ENUMERATED

DATA RECORD (REDATA) and RELOCATABLE ITERATED DATA RECORD (RIDATA).

Each relocatable DATA record is associated with a SEGDEF record or a
FRAME number, and perhaps a GRPDEF Record. The SEGDEF record or the

FRAME number, and the GRPDE® record provide information to determine
the absolute address at which the data bytes are to be loaded. The

RIDATA record differs in that the data bytes are represented within
a structure that must be expanded by the loader. The purpose of the

RIDATA record is to reduce module size by encoding repeated data

rather than explicitly enumerating each byte, as the REDATA record

does.

There are two Physical DATA records: PHYSICAL ENUMERATED DATA

RECORD (PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). The

PEDATA and PIDATA records provide an absolute address at which the

data bytes it contains are to be loaded.

There are also two Logical DATA records: LOGICAL ENUMERATED
DATA RECORD (LEDATA) and LOGICAL ITERATED DATA RECORD (LIDATA) .

Each logical DATA record is associated with a SEGDEF record. The
SEGDEF record provides information that allows the logical DATA
records to be converted to either Relocatable DATA records or
Physical DATA records.

Data bytes for all LSEG's are maintained in logical DATA
records, as an LSEG is either relocatable or it has been assigned an

address (absolute) but has not been divorced from GROUP information.

In summary, there are three classes of DATA records,

RELOCATABLE, PHYSICAL, and LOGICAL. The data bytes of the “unnamed

absolute seaqment", divorced form all LSEG and GROUP information, are
found in PHYSICAL DATA RECORDS. Data bytes from all LSEG's,

ll

80986 Object Module Formats Version 4.9

absolute or relocatable, are found in LOGICAL DATA RECORDS. The

ENUMERATED and ITERATED attributes within the classes are two ways

of representing the actual data bytes.

A 8886 loader can load RDATA or PDATA Records, but will

probably not be able to maintain the LSEG table information required

for loading LDATA Records. Thus, Relocatable and Physical DATA

records are sometimes called “Loadable" DATA records, and Logical

DATA records are called “Non-Loadable” DATA records.

INDICES

Throughout the 8686-OMF specification, "index" fields occur.

An index is an integer that selects some particular item from a

collection of such items. (Exhaustive list of examples: NAME

INDEX, SEGMENT INDEX, GROUP INDEX, EXTERNAL INDEX, TYPE INDEX, BLOCK

INDEX.)

(Note) An index is normally a positive number.

The index value zero is reserved, and may carry a

special meaning dependant upon the type ‘of index

(e.g., a Segment Index of zero specifies the "Unnamed,

absolute pseudo-segment; a Type Index of zero

specifies the "Untyped type" (which is different from

"Decline to state")). (End of Note)

In general, indices must assume values quite large (i.e., much

larger than 255). Nevertheless, a great number of object files will

contain no indices with values greater than 58 or 1609. Therefore,

indices will be encoded in I or 2 bytes, as required:

The high-order (left-most) bit of the first (and possibly the

only) byte determines whether the index occupies one byte or _ two.

If the bit is 9, then the index is a number between 9 and 127,

occupying one byte. If the bit is 1, then the index is a number

between @ and 32K=-1, occupying. two bytes, and is determined as

follows: the low-order 8 bits are in the second byte, and the high-

order 7 bits are in the first byte.

12

8685 Object Module Formats Version 4.9

CONCEPTUAL FRAMEWORK for FIXUP'S

A "Fixup" is some modification to object code, requested by a

translator, performed by the R&L system, achieving address binding.

(see Appendix 4 for Examples)

(Note) This definition of “fixup accurately

represents the viewpoint maintained by the R&L system.

Nevertheless, the R&L system can be used _ to achieve

modifications of object code (i.e., "fixups") that do

not conform to this definition. For example, the

binding of code to either of hardware floating point

or software floating point subroutines, is a

modification to an operation code, where the operation

code is treated as if it were an address. The above

definition of “fixup” is not intended to disallow or

disparage object code modifications in the wider

sense. (End of Note)

8086 and/or 89889 translators specify a fixup by giving four

data: (1) the place and type of a LOCATION to be fixed up, (2) one

of two possible fixup MODE's, (3) a TARGET, which is a memcry

address to which LOCATION must be made to refer, and (4) a FRAME

defining a context within which the reference takes place.

LOCATION - There are 5 types of LOCATION: a POINTER, a BASE, an

OFFSET, a HIBYTE, and a LOBYTE:

fo wn apne epee n m Ht en at
Pointer: | | |

fom an tan eaten natant

fon eat ————Ft
Base: | |

poe oetone—+

foe ent -=+
Offset: | |

fom ——+
Hibyte: | |

pownm—+

$-——-—+
Lobyte: | |

$o-——+

The vertical alignment of this_ diagram illustrates 4 points

(cemember that the high order byte of a word in 3986 memory is the

byte with the higher address): (1) a BASE is merely the high order

word of a pointer (and R&L doesn't care if the low order word of the

13

8886 Object Module Formats Version 4.9

pointer is present or not); (2) an OFFSET is merely the low order

word of a pointer (and R&L doesn't care if the high order word
follows or not); (3) a HIBYTE is merely the high order half of an

OFFSET (and R&L doesn't Nare if the low order half precedes or not);
(4) a LOBYTE is merely the low order half of an OFFSET (and = R&L
doesn't care if the high order half follows or not).

A LOCATION is specified by 2 data: (1) which of the above 5

types the LOCATION is, and (2) where the LOCATION is. (1) is
specified by the LOC subfield of the LOCAT field of the FIXuUpPP
Record; (2) is specified by the DATA RECORD OFFSET subfield of the
LOCAT field of the FIXUPP Record.

MODE - R&L supports 2 kinds of fixups: “self-relative" and “segment-
relative".

Self-relative fixups support the 8- and 16-bit offsets that are
used in the CALL, JUMP and SHORT-JUMP instructions. Segment=

relative fixups support all other addressing modes of the 8685.

TARGET = The TARGET is the location in MAS beina referenced. (More

explicitly, the TARGET may be considered to be the lowest byte in
the object being referenced.) A TARGET is specified in one of 8

ways. There are 4 “primary” ways, and 4 “secondary” ways. Each
primary way of specifying a TARGET uses 2 data: an INDEX-or-FRAME=
NUMBER ‘X', and a displacement ‘D's:

(TG) X is a SEGMENT INDEX. The TARGET is the D'th byte in the
LSEG identified by the INDEX.

(Tl) X is a GROUP INDEX. The TARGET is the D'th byte following

the first byte in the LSEG in the group that is eventually LOCATE‘d
lowest in MAS.

(T2) X is an EXTERNAL INDEX. The TARGET is the D‘th byte

following the byte whose address is (eventually) given by the
External Name identified by the INDEX.

(T3) X is a FRAME NUMBER. The TARGET is the D'th byte in the

FRAME identified by the FRAME NUMBER (i.e., the address of TARGET is

(X*16)+D).

Each secondary way of specifying a TARGET uses only 1 datum:
the INDEX-or-FRAME=-NUMBER X. An implicit displacement equal to zero
is assumed:

(T4) X is a SEGMENT INDEX. The TARGET is the @'th (first). byte
in the LSEG identified by the INDEX.

(T5) xX is a GROUP INDEX. The TARGET is the @'th (first) byte

in the LSEG in the specified group that is eventually LOCATE‘d
lowest in MAS,

14

8886 Object Module Formats Version 4.9

(T6) X is an EXTERNAL INDEX. The TARGET is the byte whose

address is (eventually given by) the External Name identified by the

INDEX.

(T7) X is a FRAME NUMBER. The TARGET is the byte whose 29-bit

address is (X*16).

The following nomenclature is used to describe a TARGET:

TARGET: SI(<segment name>) ,<displacement> (TO]

TARGET: GI(<group name>) ,<displacement> {T1]

TARGET: EI(<symbol name>) ,<displacement> {T2]

TARGET: <FRAME NUMS8ER>,<displacement> (T3]

TARGET: SI(<segqment name>) {T4]

TARGET: GI(<group name>) {T5]

TARGET: EI(<symbol name>) {T46]

TARGET: <FRAME NUMBERD> {T7]

Here are some examples of how this notation can be used:

TARGET: SI(CODE) ,1024 The 1625th byte in
the segment "CODE"

TARGET: GI (DATAAREA) the location in MAS of

a group called “DATAAREA"

TARGET: EI(SIN) the address of the external

subroutine “SIN”

TARGET: 8900H,24H MAS location 89024H

TARGET: EI(PAYSCHEDULE) ,24 the 24th byte following the

location of an

EXTERNAL data structure

called "PAYSCHEDULE”

Although “TARGET: SI(A)" and “TARGET: SI(A),@" both specify

the same TARGET, their use can have different effects, as is

discussed below in the section on intermediate values in fixup

arithmetic.

FRAME - Every 8886 memory reference is to a location contained within

some FRAME; where the FRAME is desiaqnated by the content of some

segment register. In order for R&L to form a correct, usable memory

reference, it must know not only what the TARGET is, but also with

‘respect to which FRAME the reference is being made. Thus every

fixup specifies such a FRAME, in one of 6 ways (FG@,-e.0-¢,F5) described

below. Some ways use a datum, X, which is an INDEX-or-FRAME=NUMBER,

as above. Other ways require no datum.

This is not the case of an 83989 self-relative reference. The

reference may be to any location within an 8889 proaram,

independently of FRAME. The only restriction is that the

15

8886 Object Module Formats Version 4.9

displacement between the LOCATION and the TARGET must be within 32K.
To indicate this type of fixup, a 7th way (F6) of specifying a frame
is introduced.

frames:

(FO) xX gis a SEGMENT INDEX. The FRAME is the canonic FRAME of

the LSEG defined by the INDEX.

(Fl) X is a GROUP INDEX. The FRAME is the canonic FRAME
defined by the group (i.e., the canonic FRAME defined by the LSEG in
the group that is eventually LOCATE‘d lowest in MAS).

(F2) X is an EXTERNAL INDEX. The FRAME is determined when the

External Name's public definition is found. There are 3 cases:

(F2a) The symbol is defined relative to some

LSEG, and there is no associated Group. The LSEG's

canonic FRAME is specified.

(F2b) The symbol is defined absolutely, without

reference to an LSEG, and there is no. associated

Group. The FRAME is specified by the FRAME NUMBER
subfield of the PUBDEF Record (aq.v.) that gives the

symbol's definition.

(F2c) Regardless of how the symbol is defined,

there is an associated Group. .The canonic FRAME of
the Group is specified. (The group is specified by
the GROUP INDEX subfield of the PUBDEF Record (q.v.).)

(F3) X is a FRAME NUMBER (specifying the obvious FRAME).

(F4) No X. The FRAME is the canonic FRAME of the LSEG

containing LOCATION. (If LOCATION is specified absolutely (i.e., in

a PEDATA Record or a PIDATA Record (q.v.)), then it is not

“contained" in an LSEG; in this case the FRAME is determined as in

(F2) above, taking the FRAME NUMBER from the FRAME NUMBER field of
the DATA Record.

(F5) No X. The FRAME is determined by the TARGET. There are 4

cases: .

(F5a) The TARGET specified a SEGMENT INDEX: in

this case, the FRAME is determined as in (FG9) above.

(F5b) The TARGET specified a GROUP INDEX: in
this case, the FRAME is determined as in (Fl) above.

(F5c) Tne TARGET specified an EXTERNAL INDEX: in

this case, the FRAME is determined as in (F2) above.

16

8886 Object Module Formats Version 4.9

(F5d) The TARGET is specified with an explicit

FRAME NUMBER: in this case the FRAME is determined as

in (F3) abdove.

(F6) No X. There is no FRAME. This is a way to indicate to

R&L that an 8089 self-relative reference is to be processed. A

signed displacement between’ the LOCATION 20-bit address and the

TARGET 20-bit address must be computed.

Nomenclature describing FRAME's is similar to the above

nomenclature for TARGET's, viz:

FRAME: SI(<segment name>) [FO]

FRAME: GI(<group name>) {F1l]

FRAME: EI(<symbol name>) (F2]

FRAME: <FRAME NUMBER> {F3]

FRAME: LOCATION {F4]

FRAME: TARGET (F5]

FRAME: NONE {F6]

In practice, for an 8086 memory reference, it is likely that

the FRAME specified by a self-relative reference will be the canonic

FRAME of the LSEG containing the LOCATION, and the FRAME specified

by a segment relative reference will be the canonic FRAME of the

LSEG containing the TARGET. This will be further explained below.

SELF-RELATIVE FIXUPS

A self-relative fixup operates as follows: A memory address is

implicitly defined by LOCATION; namely the address of the byte

following LOCATION (because at the time of a_ self-relative

reference, the 8086 IP (Instruction Pointer) or the 80989 TP (Task

block Program pointer) is pointing to the byte following the

reference).

For 8086 self-relative references, if either LOCATION or TARGET

are outside the specified FRAME, R&L gives a warning. Otherwise,

there is a unique 16-bit displacement which, when added to’ the

address implicitly defined by LOCATION, will yield the relative

position of TARGET in the FRAME.

For 8089 self-relative references (F6), if TARGET is not within

32K from LOCATION, R&L gives a warning. Otherwise, there is a

unique 16-bit signed displacement between the LOCATION and the

TARGET.

If the LOCATION is an OFFSET, the displacement is added to

LOCATION modulo 45538; no errors are reported.

If the LOCATION is a LOBYTE, the displacement must be within

the range {=-128:127}, otherwise R&L will give a warning. The

displacement is added to LOCATION modulo 255.

17

8886 Object Module Formats Version 4.9

If the LOCATION is a BASE, POINTER, or HIBYTE, it is unclear
what the translator had in mind, and the action taken by R&L is
defined by LINK-86 and/or LOCATE-86 EPS's.

SEGMENT=-RELATIVE FIXUPS

A seqment-relative fixup operates in the following way: a non-

negative 16-bit number, FBVAL, is defined as the FRAME NUMBER of the

FRAME specified by the fixup, and a signed 20-bit number, FOVAL, is
defined as the distance from the base of the FRAME to the TARGET.
If this signed 20-bit number is less than @ or greater than 65535,
then R&L will report an error. Otherwise FBVAL and FOVAL are used
to fixup LOCATION in the following fashion:

(1) if LOCATION is a POINTER, then FBVAL is added (modulo

65536) to the high order word of POINTER, and FOVAL is added (modulo
65536) to the low order word of POINTER.

(2) if LOCATION is a BASE, then FBVAL is added (modulo 45536)

to the BASE; FOVAL is ignored.

(3) if LOCATION is an OFFSET, then FOVAL is added (modulo
§5535) to the OFFSET; FBVAL is ignored.

(4) if LOCATION is a HAIBYTE, then (FOVAL / 254) is added

(modulo 255) to the HIBYTE; FBVAL is ignored. (The indicated

division is “integer division", i.e., the remainder is discarded.)

(5) if LOCATION is a LOBYTE, then (FOVAL modulo 255) is added

(modulo 256) to the LOBYTE; FBVAL is ignored.

INTERMEDIATE VALUES in FIXUP ARITHMETIC

The 8986 Object Module Formats guarantee fixups in the sense
that, if a TARGET can not be accessed from a LOCATION with the

assumed FRAME, then that failure can be detected and R&L can issue a

warnina message. This checking is called “access verification". In

order to perform this checking, LINK=-85 and LOCATE=-85 need to retain
intermediate values of its address arithmetic. These intermediate

values are retained either in the DATA Record, or in the FIXUP

Record. The following diagram illustrates three cases:

18

8986 Object Module Formats Version 4.96

fm---=- in DATA Record ---=> <=--- in FIXUP Record --=>

ee + foe ---— me mm +

1 +n | or | +n | <null> <--=- Case 1

$-----=+ foe enna pen === +

os fee ene ntamewnnnt tee meet == —+
| g | or | g | | +n | <--- Case 2

| q {or | g | n | <--= Case 3

foe wen nt fee nnn nfo esaet ¢------ fm——--- feo nn-e +

Case 1 illustrates the situation where a fixup is specified in
a “secondary” way. No explicit displacement ‘'D' is provided in the
FIXUP Record, so arithmetic must be done in the LOCATION itself, in

the DATA Record. As the diagram shows, the LOCATION may be a byte

or a word. (If LOCATION is a POINTER, arithmetic is on each half

separately, so the above diagram applies separately to each half of

a POINTER.) In Case 1, the value(s) in LOCATION are considered to
be non-negative numbers ("+n"), and are considered to be equivalent

to a specification of a displacement ‘'D'; thus the R&L access
verification incorporates the value “+n".

Case 2 illustrates the situation where a fixup is specified in
a “primary” wa. An explicit displacement 'D‘ is provided in the
FIXUP Record. This displacement is considered to be a non=neqative
number (“+n"). When all arithmetic required by the fixup is

complete, the resultant value (in the FIXUP Record) is checked for
validity by R&L, and then, finally, that result is added (modulo 256
or modulo 65536) to the original content of LOCATION (“g"). The

value “g" may be considered as non-negative, or as sianed 2°‘s

complement; R&L doesn't care because there is no checking in this

final stage of the fixup.

Case 3 is the same as Case 2, except that the displacement ‘D‘,

instead of being restricted to non-negative numbers in the range

{9:65535}, may represent signed (2's complement) numbers in the
range {~1,048,576:1,048,575}. (Note: initially, this case will not
be supported. It is designed into the formats for completeness: it
allows support, with R&L access verification, of TARGET's specified
in a “primary” way, with negative displacements ‘D'.)

Here are some cases where a "primary" specification of a TARGET

is necessary or desirable:

First, yet another definition: a "REFERENT" is a memory
location, with respect to which a TARGET is positioned. This is
best made clear by an example: in the specification

TARGET: EI(STRUCT) ,24

the TARGET is the 24'th byte after the location named “STRUCT"; the
REFERENT is the location named “STRUCT® itself.

19

8686 Object Module Formats Version 4.90

(1) A SHORT=-JMP is being made to an external subroutine. In

this case, the TARGET should be specified as
TARGET: EI(subroutine) ,@990H

The reason is that when LINK=-86 learns where the subroutine is

located, it will probably be a known offset (dl) within some LSEG A.

Thus, LINK=-86 will convert the above TARGET to the form:
TARGET: SI(A) ,dl —

Now the programmer may be correct in “knowing" that when the program

is eventually LOCATE'd, the TARGET will be within 128 bytes of

LOCATION: however, this does not mean that dl is less than 128!

Thus, aS LINK=-86 maintains the (possibly changing) value of dl as

various pieces of LSEG A are combined, it needs a full word to

maintain the offset. Since the LOCATION is a single byte, the

translator must provide an offset field in the fixup record itself

for LINK-86 to maintain intermediate fixup values.

(2) The translator wishes to reference "backwards" from the

REFERENT. For example, if the TARGET is the word in front of the

external array ARY, and the reference is with respect to a base

register that will contain the address of the LSEG named FOO, the

translator would use ,
FRAME: SI (FOO)

TARGET: EI(ARY) ,@90G6H

and place the "negative offset" FFFEH in LOCATION. R&L will perform

access verification to the REFERENT ARY; however, access to the

TARGET is not guaranteed, and is the programmer's responsibility.

Note: if Case 3 in the above diagram were available, the

translator could use

FRAME: SI (FOO)

TARGET: EI(ARY) ,-2

and R&L would perform access verification, not to the REFERENT ARY

(as above), but to the actual TARGET (in front of ARY)!

(2) (continued) The calculation by LOCATE-86 involves 3

quantities: the MAS-location of FOO, the MAS-location of the LSEG
(say, BAZ) containing ARY, and the relative offset of ARY within

BAZ. LOCATE-85 can enforce that the final offset, which is the
difference

(location of BAZ plus relative offset) = (location of FOO),

is not greater than ‘85535, provided that all quantities entering

into this difference are known. If the translator had specified the
fixup as

FRAME: SI(FOO)

TARGET: EI(ARY)

then LINK=-86 would have had to maintain the (possibly changing from

linkage to linkage) relative offset of ARY within BAZ, in the

LOCATION itself, where it qets “added” to the content FFFEH. And

because the R&L system cannot know if the FFFEH was a neaative 2 or

a positive 65534, the access verification of R&L may thwart the

translator‘s intentions.

29

8086 Object Module Formats Version 4.6

The following example (3) is a case where access verification

works whether the TARGET specification is “primary” or “secondary”:

(3) The translator wishes to reference "“forwards“" from a

REFERENT, and to ensure that the TARGET lies within the specified

FRAME. For example, we wish to reference the 190@'th byte in an

external structure STRCT. The translator may specify the fixup as

FRAME: SI (FOO)

TARGET: EI(STRCT) ,99 :

R&L will ensure that the distance from the canonic FRAME of FOO to

the 1098'th byte of STRCT is less_ than 65535. (Note that this

constraint might be achieved even if STRCT lies outside the canonic

FRAME of FOO.)

(4) Hibyte fixups specified in a primary way will be correct

in that a full word is used to accumulate the value of an offset.

Only after LOCATE'ing will the value of the hibyte of an offset be

used as a fixup value. This prevents the loss of accuracy due to

truncation of low byte before adding the address at which an object

is LOCATE'd.

21

8086 Object Module Formats Version 4.9

RECORD ORDER
A object code file must contain a sequence of (one or _ more)

modules, or a library containing zero or more modules. A module is
defined as a collection of object code defined by a sequence of

object records. The following syntax shows the valid orderings of
records to form a module. In addition, the given semantic rules
provide information about how to interpret the record sequence. The
syntactic description language used herein is defined in WIRTH:
CACM, November 1977, v 28, n 1l, p 822 —- 823.

sequence | library. object. file

sequence = module {module}.

library = LIBHED {module} libtail.

module = tmod | lmod | rmod | omod.

tmod = THEADR sgr. table {component} modtail.

1lmod = LHEADR sqr.table {data} {t component} modtail.

rmod = RHEADR sgr.table {data} {t. component} modtail.

omod = RHEADR sgor. table {o. component} o-modtail.

sgr. table seg. grp {REGINT].

sgor; table seq.gqrp {OVLDEF} [(REGINT].

seq. grp {LNAMES} {SEGDEF} { TYPDEF | EXTDEF | GRPDEF }.,

Oo, component {data} {t component} ENDREC.

t. component THEADR {component}.

component data | debug, record.

data = content.def | thread-def |
TYPDEF | PUBDEF | EXTDEF.

Locsym | LINNUM | DEBSYM |
BLKDEF | BLKEND | ENDREC,

debug. record

content. def data. record {FIXUPP}.

thread def FIXUPP. (containing only thread fields)

LIDATA | LEDATA | PIDATA | PEDATA |

REDATA [| RIDATA.

data_ record

o.modtail {OVLDEF} modtail.

22

8886 Object Module Formats Version 4.90

modtail

libtail

" (REGINT] MODEND.

LIBNAM LIBLOC LIBDIC.

NOTE: The character strings represented by capital letters above

are not literals but are identifiers that are further defined in the

section defining the Record Formats.

The following rules apply:

1. A FIXUPP record always refers to the previous DATA record.

The debug records have as their originating module the module

named by the nearest preceding THEADR record.

All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF records must

precede all records that refer to them.

COMENT records may appear anywhere within a file, except as the

first or last record in a file or module, within a content.def,

or within a libtail.

OVLDEF records may appear either immediately after the segment

and group definitions or at the end (before the REGINT and

MODEND records), but not at both places. The number of OVLDEF

records must be equal to the number of o components, and the

order of these records must be same as the o,component order,
the first OVLDEF record pointing to the ‘root’ part.

As with the OVLDEF records, the REGINT record may appear either

at the beginning of a module (after SEGDEF's, GRPDEF'sS, and

OVLDEF's if any) or at the end (before the MODEND record), but

there can not be two REGINT records in the same module.

23

8886 Object Module Formats Version 4.9

INTRODUCTION, to, the. RECORD. FORMATS

The following pages present diagrams of Record Formats in

schematic form. Here is a sample, to illustrate the various

conventions:

SAMPLE, RECORD. FORMAT
(SAMREC)

RA AKKKAKKRKKERRERHEKAKKKE | f /RKKKEREEE | | | | BRAK AKAKK

* *& * * & *

* REC * RECORD * NAME * NUMBER * CHK *
* Typ * LENGTA * * SUM *
* yxxH * * * * *

& * * * * *

RKKKKKKKKKRKKKKREKKRERK / f/f /RKKKKEKKKE | | | | ¥XRRRKAKARE

| |
+----rpt----+

TITLE and OFFICIAL ABBREVIATION

At the top is the name of the Record Format Described, together

with an official abbreviation. To promote uniformity among various

programs, including translators, debuggers, the various R&L

products, and various tools such as EDOJ86 = and OJED85, the

abbreviation should be used in both code and documentation. The

abbreviation is always 6 letters.

The BOXES
ee Or nee Re

Each format is drawn with boxes of two sizes. The narrow

boxes, outlined entirely with asterisks, represent single bytes.

The wide boxes, outlined entirely with asterisks, represent two

bytes each. The wide boxes, outlined with asterisks, but with three

slashes in the top and bottom, represent a variable number of bytes,

one or more, depending upon content. The wide boxes, outlined with

asterisks, but with four vertical bars in the top and_ bottom,

represent 4-byte fields.

REC TYP

The first byte in each record contains a value between 9 and

255, indicating which record type the record is.

RECORD LENGTH

The second field in each record contains the number of bytes in

the record, exclusive of the first 2 Fields.

NAME
eee

24

8486 Object Module Formats Version 4.90

Any field that indicates a "NAME“ has the following internal

structure: the lst byte contains a number between @ and 46,

inclusive, that indicates the number of remaining bytes in the

field. The remaining bytes are interpreted as a byte string; each

byte must represent the Ascii code of a character drawn from this

set: { ?@s. 9123456789ABCDEFGHIJKLMNOPORSTUVWXYZ }. Most

translators will choose to constrain the character set more

strictly; the above set has been chosen to “cover” that required by

all current processors.

NUMBER
eet mee pe eh ae:

A 4=byte NUMBER field represents a 32-bit unsigned integer,

where the first 8 bits (least-significant) are stored in the first

byte (lowest address), the next 8 bits are stored in the second

byte, etc.

REPEATED OR CONDITIONAL FIELDS

Some portions of a Record Format contain a field or series of

fields that may be repeated 9 or more times. Such portions are

indicated by the “repeated” or “rpt" brackets below the boxes.

Similarly, some portions of a Record Format are present only if

some given condition is true; these fields are indicated by similar

“conditional” or “cond" brackets below the boxes.

CHK SUM
eee ee gee et

The last field in each record is a check sum, which contains

the 2's complement of the sum (modulo 2565) of all other bytes in the

record. Therefore, the sum (modulo 256) of all bytes in the record

equals 9.

BIT FIELDS

Descriptions of contents of fields will sometimes get down to

the bit level. Boxes outlined in asterisks, but with vertical lines

drawn through them, represent bytes or words; the vertical lines

indicate bit boundaries, thus the byte, represented below, has 3

bit-fields of 3-, l=, and 4-bits:

RKKEKEKKKKEKRKKEKRKKEKEEKKEREKER

* | | =E to dt t *
* | | *

* | - Eo vy Yo t t *
RREKKKEKEKRKEKKREKEKEKREERERKRE

25

8886 Object Module Formats Version 4.98

T-MODULE HEADER RECORD
(THEADR)

RERRKAKKKKKEKEKKKRKRKAKKE / f PRERRRKARKKKE

* *& * * &

* REC * RECORD #* T * CHK *

80H * * NAME * *
* ® * ®

RRKKKKKAAKKKKKKRARRERE / f /RRKRERRREKE

Every module output from a translator must have a T=-MODULE

HEADER RECORD. Its purpose is to provide the identity of the
original defining module for all line numbers and local symbols
encountered in the module up to the following T-MODULE HEADER RECORD
or MODULE END RECORE,

This record can also serve as the header for a module, i.e., it
can be the first record, and will be for modules output from
translators.

T=MODULE NAME

The T=MODULE NAME provides a name for the T=-Module.

25

8986 Object Module Formats Version 4.90

LeMODULE. HEADER RECORD
(LHEADR)

ReEKKEKKKKKKKKAKKKKKKKKE / f /EKKEKKKRKEE

* & * * *

* REC * RECORD * L=MODULE * CHK *

82H * * ® x
& * * a

REKKKKKKRKKEKARRAEKEKEER [| f /REKRAREKKEKE

Every module previously created by (cross) LINK-86 (V1.3 or

earlier) or by LOCATE-86 may have an L=MODULE HEADER RECORD. This

record serves only to identify a module that has been processed

(output) by LINK=86/LOCATE-85. When several modules are linked to

form another module, the new module requires a name, perhaps unique

from those of the linked modules, by which it can be referred to (by
the LIB85 program, for example).

L=MODULE NAME

The L=MODULE NAME provides a name for the L=Module.

27

8985 Object Module Formats Version 4.9

R-MODULE HEADER RECORD

(RHEADR)

RRA HEAR RAEAKAH | f /KREREKERKE [| f [/RERRKRREE ff fREKRREEEREX

* * & * *

* REC * RECORD * R-MODULE * R-=MODULE * R=MODULE * CHK

6EH * * & * &

*& & *® & *

*

*

*

*

&

RARE KKK KAKKKKEKE ff /RRKRRKEKE ff [RRR RKERRE ff [RERREKEREEE

Every module created by LINK=-86/LOCATE-86 may have an R-MODULE
HEADER RECORD. This record serves to identify a module that has
been processed (output) by LINK=86/LOCATE=86. It also specifies the
module attributes and gives information on memory usage and need.
When several modules are linked to form another module, the new
module requires a name, perhaps unique from those of the linked
modules, by which it can be referred to (by the LIB86 program, for
example).

R-MODULE NAME

The R=MODULE NAME provides a name for the R=-Module.

R-MODULE ATTR

The R=MODULE ATTR field provides information on various module

attributes, and has the following format:

HAKKAR EKER RARER EREREREEKRREKRKEEAKRKAKKRAAKKER! | | [RARE
* * * & * *

* MOD * SEGMENT *. GROUP * OVERLAY #* OVERLAY #*
* DAT * RECORD * RECORD -* RECORD * RECORD *
* * COUNT -— * ©. COUNT * COUNT * OFFSET *
* x te. * * *
KKKKKKKEKKAKKARE KERR ARE RERKAKERARAKRRRAEKKRARER | | | [RE

The MOD DAT subfield has the following format:

KARE ERK RERERREREREEEEEREEKEKE

* | | | | | | | *
* Z2f{2z2i)2it2i2ziéiz TYP *

* | | | | | i | *
RRERKRKREKREKERKRAERRKEKKERRRREKRKKKRE

Z*s indicates that these l=-bit fields have not currently been
assigned a function. These bits are required to be zero.

28

8286 Object Module Formats Version 4.90

TYP is a 2=bit subfield that specifies the module type. The

semantics are defined as follows:

TYP=@ The module is an absolute module.

TYP=1 The module is a relocatable module. Fixups

other than base fixups may still be present.

TYP=2 The module is a Position Independent Code module.

It can be loaded anywhere. No fixups are needed.

TYp=3 The module is a Load-Time Locatable Module.

It can be loaded anywhere with perhaps some base

fixups to be performed.

The SEGMENT RECORD COUNT subfield indicates the number of

Segment Definition Records in the module.

The GROUP RECORD COUNT subfield indicates the number of Group

Definition Records in the module.

The OVERLAY RECORD COUNT subfield indicates the number of

Overlay Definition Records in the module (including Overlay

Definition Record for the ‘Root').

The OVERLAY RECORD OFFSET subfield is a 4=byte field. It

contains a 32-bit unsigned number indicating the location in bytes,

relative to the start of the object file, of the first Overlay

Definition Record in the module. This field must be zero when

OVERLAY RECORD COUNT is zero.

The R=-MODULE INFO field contains a sequence of four 32-bit

unsiqned numbers specifying the different types and sizes (in bytes)

of memory space that the module will need. It has the following

format:

kREKK | | | | Re RAK KK * | | | [ke ake RRR | | | [ee ARRRAKK | | | [xx xe

*& ¥ % & w

* STATIC * MAXIMUM * DYNAMIC * MAXIMUM *
* SIZE * STATIC * STORAGE * DYNAMIC *
* * SIZE * * STORAGE *
* * & * &

ke Kx | | | [ke ee RK KK | | | | # ew aR HR ee | | | [eee eek eee | | | [x*ae*

STATIC SIZE is the total size of the LTL segments in the

module. This is the minimum static memory space that must be

allocated to the module so that the module can be loaded.

MAXIMUM STATIC SIZE is the maximum total size of the LTL

segments in the module. This value must be greater than or equal to

STATIC SIZE. (By default MAXIMUM STATIC SIZE is set equal to STATIC

SIZE) This value only aives the maximum space needed. Depending on

available memory, the loader may allocate any value between the

STATIC SIZE and the MAXIMUM STATIC SIZE.

29

8886 Object Module Formats Version 4.9

DYNAMIC STORAGE is the memory space that must be allocated (for

buffer, for dynamic expansion, etc...) at load=-time. The default
value is zero.

MAXIMUM DYNAMIC STORAGE is the maximum dynamic memory that
might be needed by the module. This value must be greater than or
equal to DYNAMIC STORAGE (By default MAXIMUM DYNAMIC STORAGE value
is set equal to DYNAMIC STORAGE value).

39

8885 Object Module Formats Version 4.9

LIST. OF. NAMES. RECORD
(LNAMES)

RKKRKKKKKERERKHEEREKRERE ff /REREREKKKEE

w * * %

REC * RECORD * NAME * CHK *
TYP * LENGTH * * SUM *

*

&

*&

96H * * *
* x *

REKKKEKKKHRKKHRRKRREREKE | f [REKRERKKKRE

$o---0pt---=+

&

®

*

*

&

x

This Record provides a list of Names that may be used in

following SEGDEF and GRPDEF Records as the names of Segments,

Classes, Overlays and/or Groups.

The ordering of LNAMES Records within a module, together with

the ordering of Names within each LNAMES Record, induces an ordering

on the Names. Thus, these names are considered to be numbered: 1,

2, 3, 4, ee. These numbers are used as “Name Indices" in the

‘Segment Name Index, Class Name Index, Overlay Name Index and Group

Name Index fields of the SEGDEF and GRPDEF Records.

NAME

This repeatable field provides a name, which may have zero |

length.

31

8686 Object Module Formats Version 4.9

SEGMENT DEFINITION. RECORD
(SEGDEF)

KK KAK HAKKAR KKK ARK { / [RRKERKHRRRERERHKKE / f /REKKKEK / f /EREKERE f/f [RRREKRERER

*

*

*

%

*

*

REC

TYP

98H

* * * * * * *

* RECORD * SEGMENT * SEGMENT * SEGMENT * CLASS * OVERLAY * CHK

* LENGTH * ATTR * LENGTH * NAME * NAME * NAME * SUM

* * * * * * x &
* HARKER KKK RARER KEK | f [KE REKERERREREERE ff [RERKEKK ff [RHEE / f [RRERRREKR

| |
t=----c o nditioona l=----+

SEGMENT INDEX values 1 through 32767, which are used in other

record types to refer to specific LSEG‘s, are defined implicitly by

the sequence in which SEGDEF Records appear in the object file.

(SEGMENT INDEX @ is reserved to indicate the “unnamed absolute

seqment", which is not really a seqment: it is a possibly empty set

of possibly disjoint regions of memory; it is normally created by

LOCATE-86, although translators may create portions of it as well,

if they wish.)

SEG. ATTR

The SEG ATTR field provides information on various attributes

of the segment, and has the following format:

RHR KKHMHAKEKKREKRREKEKKEEEEREKEEKEREKREEKHEEKRKEREREKRERKKEEKE

& * * * *

* ACB * FRAME * OFF * LTL * MAXIMUM * GROUP
* p * NUMBER * SET * DAT * SEGMENT * OFFSET
* * * * * LENGTH *
x * * * * *

HRKKKKK KKK KEKE KEKREE KEK KEKE RREKEKEEREKRERERKEKEKKEEER

| | |
+=---conditional---+--=- conditional ---+

%
%

The ACBP byte contains 4 numbers, the A, C, B, and P attribute

specifications. This byte has the following format:

KKK ARK KK KKK AKE KEKE KKK KKKKE

* | | | | | | | *
* A | Cc | BI P*
* | | | | | | | *
KRRKEKKKKEEKEKEKREKKKKEEKKKKEKKKKKKRKHEKKEKK

A (Alianment) is a 3-bit subfield that specifies the alignment

32

8086 Object Module Formats Version 4.9

attribute of the LSEG. The semantics are defined as follows:

SEGDEF describes an absolute LSEG.

SEGDEF describes a relocatable, byte aliqned LSEG.

SEGDEF describes a relocatable, word alianed LSEG.

SEGDEF describes a relocatable, paragraph aliqned LSEG.

SEGDEF describes a relocatable, page aligned LSEG.

SEGDEF describes an unnamed absolute portion of MAS.

SEGDEF describes a load-time locatable (LTL), paragraph

aligned LSEG if not member of any group.

P
P

P
P
y
Y
r
Y

yp
u
t

it
bd

we
a

D
O

P
W
N

r

In addition the value of A determines if one or several

“conditional” fields will be present. If A=@ or A=5 then the FRAME

NUMBER and OFFSET fields will be present. If A=6 then the LTL DAT,

MAXIMUM SEGMENT LENGTH, and GROUP OFFSET fields will be present. If

A<>S then the three NAME INDEX fields will be present.

Cc (Combination) is a 3-bit subfield that specifies the

combination attribute of the LSEG. Absolute seqments (A=@ or A=5)

must have combination zero (C=). In this case the seqments will be

combined like C=6 below if and only if their FRAME NUMBER'S and

OFFSET's match (For A= their complete names must match as well).

For relocatable segments, the C field encodes a number 9@,1,2,4,5,6

or 7 indicating how the segment may be combined. The interpretation

of this attribute is best given by considering how two LSEG's are

combined: Let X,Y be LSEG's, and let Z be the LSEG resulting from

the combination of X,Y. Let LX and LY be the lengths of X and Y,

and let MXY denote the maximum of LX,LY. Let G be the length of any

gap required between the X- and Y-components of Z to accommodate the

alignment attribute of Y. Let LZ denote the length of the

(combined) LSEG Z; let dx (@<=dx<LX) be the offset in X of a byte,

and let dy similarly be the offset in Y of a byte. Then the

following table gives the length LZ of the combined LSEG Z, and the

offsets dx' and dy’ in Z for the bytes corresponding to dx in X and

dy in Y:

LZ ax! dy!
LX+LY+G dx ay+LX+G
LX+LY dx dy
LX+LY ax+LY dy+LXx
MXY dx dy
MXY dX+MXY=LX dy+MXY-LY N

Y
H
D
U
S
N
I
O

The above table has no lines for C=60, C=l or C=3. C=

indicates that the relocatable LSEG may not be combined; C=1 has the

same combination semantics as C=6, but additionally "distinguishes"

the LSEG so that LOCATE-85 will (in the default case) place the LSEG

above all other LSEG's in MAS (this corresponds to the MEMORY

seament semantics of 8489 R&L); C=3 is undefined.

B (Biq) is a l=bit subfield which, if 1, indicates that the

Seqment Length is exactly 64K (65536). In this case the SEGMENT

LENGTH field must contain zero.

33

8886 Object Module Formats Version 4.6

P (Page-Resident) is a l-bit subfield which, if 1, demands that

the segment be located in MAS without crossing a page boundary.
(This corresponds to the “in-page" relocation type of 8988 R&L.)

The FRAME NUMBER and OFFSET fields (present only for absolute

segments, A=9@ or A=5) specify the placement in MAS of the absolute
segment. The range of OFFSET is constrained to be between 9 and 15
inclusive. If a value larger than 15 is desired for OFFSET then an
adjustment of the FRAME NUMBER should be done.

The LTL DAT subfield (present only for LTL seqments, A=6)
specifies the attributes of an LTL segment. It has the following
format:

RERRREREKKEERRERKRRRERKKRRKEKKKKRREREE

* | | | | | | ; *
Gilziziz2i2i{2 4! 2 |BSM

| | | | | | | *
RRERERERREKKEEEEREREKRREKERKEKEKKKREE

Z's indicate that these l-bit fields have not currently been
assigned a function. These bits are required to be zero.

G (Group) is a lebit field that, if 1, specifies that the

segment is a member of a group, and should be loaded aS a part of

the group.

BSM (Big Segment Maximum Length) is a l-bit field that, if 1,

specifies that the maximum segment length is exactly 64K. In this
case the MAXIMUM SEGMENT LENGTH must contain zero.

The MAXIMUM SEGMENT LENGTH subfield (present only for LTL
segments, A=6) specifies the maximum length in bytes of the LTL
segment. (The purpose of this field is to provide information to a
loader as to reserve memory space as much as _ possible up to. the

value in this field.) This va.ue must be greater than or equal to
the value in the SEGMENT LENGTH field. The MAXIMUM SEGMENT LENGTH

field is only big enough to hold numbers from 96 to 64K-1 inclusive.
The BSM attribute bit in the LTL DAT field (see above) must be used

to give the segment a MAXIMUM length of 64K.

The GROUP OFFSET subfield (present only for LTL segments, A=6)
gives the offset of the first byte of the segment relative to the
base of: the parent group. It must be zero if the G bit is @. This
value will be used by the loader to determine the location relative
to the group base.of the data records belonging to the segment.

SEGMENT LENGTH

The SEGMENT LENGTH field oaives the length of the segment in

bytes. The length may be zero; if so, LINK-85 (unlike LINK-89) will
not delete the segment from the module. The SEGMENT LENGTH field is
only big enough to hold numbers from 8 to 64K-1 inclusive. The 8B

34

8886 Object Module Formats Version 4.96

attribute bit in the ACBP field (see above) must be used to give the

segment a length of 64K.

SEGMENT NAME INDEX

The Segment Name is a name the programmer or translator assigns

to the segment. Examples: CODE, DATA, TAXDATA, MODULENAME CODE,

STACK. This field provides the Segment Name, by indexing into’ the

list of names provided by the LNAMES Record(s).

CLASS. NAME INDEX

The Class Name is a name the programmer or translator can

assign to a segment. (If none is assigned, the name is null, and

has length 4g.) The purpose of Class Names is to allow the

programmer to define a “handle“ by which several LSEG‘'s) may be

referred to (e.g. at LOCATE-time) by a single reference. Examples:
RED, WHITE, BLUE; ROM, FASTRAM, DISPLAYRAM. This field provides the

Class Name, by indexing into the list of names provided by the

LNAMES Record(s).

OVERLAY NAME INDEX

The Overlay Name is a name the translator and/or LINK-86, at

the programmer's behest, apply to a segment. The Overlay Name, like

the Class Name, may be null. This field provides the Overlay Name,
by indexing into the list of names provided by the LNAMES Record(s).

(Note) The “Complete Name" of a segment is a 3=

component entity comprising a Segment Name, a Class
Name and an Overlay Name. (The latter 2 components

may be null.) (End of Note)

35

8886 Object Module Formats

GROUP DEFINITION RECORD

(GRPDEF)

RRA AKAKKARERKEKRRERER | f fERRRERKRERE ff [RRRRRREKEKEKE

& *

* REC *
* TYP *
* 9AH *
& *

& RRRAKKAAKAARAR EKER KEK f/f [REKEKEEERE | f [RRKEEREERER

GROUP NAME INDEX

The Group Name is a name by which a collection
The important property of such a group is

RECORD

LENGTH

*

*

*

*

&

LSEG's may be referenced.
that, when the LSEG's are eventually fixed in MAS, there must

GROUP
NAME
INDEX

k

*&

*

Fd

*

+--repeated=--+

GROUP
COMPONENT

DESCRIPTOR

&

*

*

*

&

%

&

*

*®

*

*

of

Version 4.9

1 or more

exist

some FRAME which contains (or “covers") every LSEG of the group. If

this is not the case, LOCATE=86 will issue a warning messaqe.

The GROUP NAME INDEX field provides the Group Name, by indexing

into the list of names provided by the LNAMES Record(s).

GROUP COMPONENT DESCRIPTOR

Each GROUP COMPONENT DESCRIPTOR has 1 of the following formats:

35

RREKKKRKRKKE | / fREREE

*

* SI
w

* (FFH)
ew

Ke RKKRKRE AE / / [KKK

*

*

&

x

*&

SEGMENT
INDEX

*

&

*

we

ARRERRRERER ///RERRE

*

* EI
*

&

“k

* (FEH) *

RRRKKKRKAARE / | [RENE

*

* EXTERNAL

INDEX

*

*®

*

*

*

®

8086 Object Module Formats Version 4.9

KH KHAHKRKERK ff fRRRRHKEKK / / [J RRRKKEERE / / /RRKREK

*& *& * * we

* SCO * SEGMENT * CLASS * OVERLAY *
* * NAME * NAME * NAME *

&

%

w

* (FDH) * INDEX * INDEX * INDEX
* x # *

KK RHKAEKKKK | f /REKKKKHEKE / / /RHRRRKER f/f fRRRER

HER KHRRAKREKHKREKHKKEKKREAKREEREREKERREREKEE

* * *& * *&

* LTL * LTL * MAXIMUM * GROUP *
* GRP * DAT * GROUP * LENGTH *
* (FBH) * * LENGTH * x
& * & we &

HR RHEE KEREREKRERREKERREREEREKRREKREER

KRERKEKRREREEKREKRERKEKREEREER

*& 5d * *

* ABS * FRAME * OFF *
* GRP * NUMBER * SET *
* (FAH) * * *

* * * *

WEKERKRKEKEKEKKEKHKHKKEKKEKEK

These 5 kinds of DESCRIPTOR's are now discussed:

If the first byte of the DESCRIPTOR contains S3FFH, then the

DESCRIPTOR contains 1 more field, which is a SEGMENT INDEX that

selects the LSEG described by a preceding SEGDEF record.

If the first byte of the descriptor contains 9FEH, then the

DESCRIPTOR contains 1 more field, which is an EXTERNAL INDEX that

selects the LSEG that is (eventually) found to contain the specified

External Name.

(Note) If the definition of the External Index is

(eventually) found to be physical instead of logical

(i.e., the External is defined with respect to a PSEG

rather than an LSEG), then an error in group

specification has occurred. (End of note)

If the first byte of the DESCRIPTOR contains 9FDH, then the

DESCRIPTOR contains 3 more fields, which are Name Index fields,

which determine one or more Segment Name(s), Class Name(s), and

Overlay Name(s), respectively. This DESCRIPTOR allows a translator

or programmer to include in a aqroup, one or more LSEG's from

separate translations (for which SEGMENT INDEX's cannot be known).

37

8686 Object Module Formats Version 4.9

A Name Index with value zero carries special siqnificance: it
specifies all Names. (Note: Name Indices with zero value may not
occur in other record types.)

If the first byte of the DESCRIPTOR contains 9FBH, then the
DESCRIPTOR contains 3 more fields, which are the LTL DAT field, the
maximum length of the group, and the length of the group. This

descriptor, if present, must precede all other descriptors in the
record. There may be at most one descriptor of this type in a
GRPDEF record. There may not be any absolute component in the
group. A segment can not be in two such groups. :

The LTL DATA field has the following format:

KERR EERE RRR K

* | | | | | | | *
*Z2iI2i42it12 it 2 *'| Z | BGLIBGM*

* | | | | | | | *
KRREEKKKKKEREKKREREKRKEHEEKKEREKKEKERRAK

Z's indicate that these 1l-bit fields have not currently been
assiqned a function. These bits are required to be zero.

BGL (Big Group Lenath) is a 1-bit subfield that, if 1,
specifies that the Group length is exactly 64K. In this case _ the
GROUP LENGTH subfield must contain zero.

BGM (Big Group Maximum Length) is a l=bit subfield that, if 1,
specifies that the maximum group length is exactly 464K. In this
case the MAXIMUM GROUP LENGTH subfield must contain zero.

The GROUP LENGTH subfield specifies the length of the group
that has been determined after the Group is “located”, and _ the
segments in the group are put in contiquous memory area. All fixups
have been performed relative to the base of the Group.

The MAXIMUM GROUP LENGTH subfield specifies the maximum length
of the group that has been determined after the Group is “located”,

using the maximum lengths of the segment components.

If the first byte of the DESCRIPTOR contains Q@FAH, then the
DESCRIPTOR contains the address of the Group. Once a Group has been
LOCATEd, it has an address chosen by LOCATE=86, relative to which
all fixups have been performed. If fixups relative to the Group
base are required after LOCATE-86 has assigned an address to the
Group then the FRAME NUMBER should be used as the base. The address

of the Group is also available for debugging systems such as_ ICE,
If a Group has been assigned an address by LOCATE=-85 then it is
absolute and this descriptor must precede all other descriptors in

the record. There may be at most one descriptor of this type in a
GRPDEF record.

38

80886 Object Module Formats Version 4.8

(Examples) Assume that an LNAMES record exists such that the

names “DATA“", “RAM", “MYPROG", “CODE”, “" (null), “STACK", “CONST

and “MEMORY".are selected by Name Index values of 1, 2, 3, 4, 5, 6,

7 and 8, respectively.

The Descriptor with 4 fields: [@FDH, 3, l, 1] specifies the

LSEG with Segment Name “MYPROG", Class Name “DATA", and Overlay Name

“DATA”.

The Descriptor with fields: {OFDH, 3, 1, 5] specifies the LSEG

with Segment Name “MYPROG", Class Name “DATA“, and no (or “null", or

“unspecified") Overlay Name.

The Descriptor with fields: [OFDH, 3, 1, 8] specifies any and

all LSEG's with Segment Name "“MYPROG" and Class Name "“DATA",

regardless of their Overlay Name(s).

The PLM-86 compiler will be able to inform LOCATE-86 of the

“Small" assumptions by emitting 2 GRPDEF (Group Definition) Records:

one contains the single descriptor [@FDH, 4, 4, 5], the other

contains the descriptors {@FDH, 1, 1, 5], (OFDH, 5, 6, 5],

(OFDH, 7, 7, 5], and [OFDH, 8, 8, 5]. (End of Examples)

39

8086 Object Module Formats Version 4.9

TYPE DEFINITION RECORD
(TYPDEF)

HR RIKKI RRR REE | / [RERERRERK ff J RRRKREREREEE
x * te * *

REC * RECORD * NAME * EIGHT * CHK *
TYP * LENGTH * (LINK86 * LEAF * SUM *

*®

w

*&

* 8EH * * USE) * DESCRIPTOR * *
® *® *& ® ® *®

RRA RERKEREEKEKEERKEEK | f/f /RREKKERER ff J RREREEERREEE

This record provides the description of the type of an object
or objects presumably named by one or more names provided in PUBDEF,
EXTDEF, BLKDEF, DEBSYM and/or LOCSYM records. The type is described
as a Branch, which consists of a sequence of Leaves. The types

supported, and the corresponding branches, are provided in an

appendix.

As many “EIGHT LEAF DESCRIPTOR“ fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to

eight leaves.)

TYPE INDEX values 1 through 32767, which are contained in other
record types to associate object types with object names, are
defined implicitly by the sequence in which TYPDEF records appear in
the object file.

NAME (LINK86 USE)
en ne TY RY ee

Use of this field is reserved for LINK-86. Translators should
place a single byte containing 9 in it (which is the representation

of a name of length zero).

EIGHT LEAF DESCRIPTOR
re

This field can describe up to eiqht Leaves. If more than eight
Leaves are to be represented, the field may be ‘repeated as
necessary. Unless the last leaf is a Repeat Leaf (see below), the

Branch is deemed to end in an indefinite sequence of easy null

leaves. This field has the following format:

RaKRKKKRKKK / f/f /REKKKK

* * *

* EB * LEAF *
* N * DESCRIPTOR *
% * *

* *

RHREKKKKEKEE f/f /REKRKEE

|
+

|
$----rpt-----

49

8986 Object Module Formats Version 4.9

The EN field is a byte: the 8 bits, left to right, indicate if

the following 8 Leaves (left to right) are Easy (bit=8) or Nice

(bit=1).

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times,

has one of the following formats:

RHREERKKEKKEKREKKERERKEEE

* * *

* * g *

* 129 * to *
* * 64K-1 *
* * *

KRARERKKEKKEEKEKKEKRRKEER

RHKKKEKKEKEKER / f/f fREKEK

* * *

* * *

* 138 * NAME *
* * *

* * *&

RaKKERAKEEE / / /REKKK

ReKKEKKEKAKK | | /REKKE

x * *

x * *&

* 131 * INDEX *
* *& *

* * *

HRHAKKKREKKE | / /RAKEKK

RREKKEARKEKKKEKKEEKREKKEKEREE

* * *

x * 6g *

* 132 * to *
* * 16M=1 *
* * *

RKEKKEKKEKEKRKKEKEKEKKKRKEKKRRKEKE

41

8886 Object Module Formats Version 4.98

RREKEKAERRREKRE

® * *

* #-127 *
* 134 * to *
* #4127 *
& & %

MWEREKKKKRKKKERK

RREARRREKRRERKEREREREREE

5d & *&

* *# =32K *
* 135 *% to *
* * +32K *
*& * *

REEKEKRKEEKAEKKEKEKRKERE

RREKRBKKKKEKKEKAKKKEKKKKEKKKKKKKEE

& * &

* * 4=-byte signed *
* 136 * integer *
& & *

* & *

RRERKREKKREKEEKKHEKEEKRKKKKERKRKRKRKREKE

The single byte, containing a value between 9 and 128
represents a Numeric Leaf or a Null Leaf. If the value is 128, it

“represents a Null Leaf. If the value is less than 128, it
represents a Numeric Leaf with the indicated integer number.

The second form, with a leading byte containing 129, represents
a Numeric Leaf. The number is contained in the following 2 bytes.

The third form, with a leading byte containing 139, represents

a String Leaf. The field following the leading byte represents the
string, in OMF's standard representation. :

The fourth form, with a leading byte containing 131, represents

an Index Leaf. The field following the leading byte represents an

Index, which is a number between @ and 32K-.., in OMF’s standard
representation. Recursively defined types are allowed.

The fifth form, with a leading byte containing 132, grfe@resents
a Numeric Leaf. The number is contained in the following 3 bytes.

42

8486 Object Module Formats Version 4.0

The sixth form, a single byte of 133, is a Repeat Leaf. A

Repeat Leaf can only occur as the last leaf of a Branch. If the

last leaf of a branch is a Repeat Leaf then the previous leaf is

considered to repeat indefinitely. Otherwise the Branch is

considered to end in an indefinitely long sequence of easy Null

leaves.

The seventh form, with a leading byte containing 134,

represents a Signed Numeric Leaf. The number is’ contained in the

following byte, which will be signed extended if neccessary.

The eighth form, with a leading byte containing 135, represents

a Signed Numeric Leaf. The number is contained in the following 2

bytes, signed extended if neccessary.

The ninth form, with a leading byte containing 136, represents

a Signed Numeric Leaf. The number is contained in the following 4

bytes, siqned extended if necessary.

43

8886 Object Module Formats Version 4.98

PUBLIC NAMES DEFINITION RECORD
(PUBDEF)

KARR ERR RRR RAERKRI RE | f fRKKRREKEK ff JRKRRHERERERRERERREER EE f/f [RREREKKAKKK

* * * & & * *®

REC * RECORD * PUBLIC * PUBLIC * PUBLIC * TYPE * CHK *
TYP * LENGTH * BASE * NAME * OFFSET * INDEX * SUM *
OGH * * * * * x *

*&

*&

+
+

&
F

* * & * * ®

KH HAKKAKKKERKEREKRKKR EEE ff /RRERRERRE ff [RRRKRERRRERRRERRKREERE ff /RRRRERKEEEK

tere rrr srr repeated--- corre r--- ont

This record provides a list of 1 or more PUBLIC NAME's; for

each one, 3 datums are provided: (1) a base value for the name, (2)

the offset value of the name, and (3) the type of entity represented

by the name.

PUBLIC BASE
=e meme wa a

The PUBLIC BASE has the following format:

RHKHK / f [RRRERRREK ff [RREREKERKREREKKE
x

GROUP * SEGMENT #* FRAME

*
*

* INDEX * INDEX * NUMBER
* * *

* *

KHER / f [RRR / f [J RRRKERERERREREEERE

| |
+conditional+

%
F
F

The GROUP INDEX field has a format given earlier, and provides

a number between @ and 32767 inclusive. A non-zero GROUP INDEX

"associates" a group with the public symbol, and is used as

described on page 15, case (F2c). A zero GROUP INDEX indicates that

there is no associated group.

The SEGMENT INDEX field. has a format given earlier, and
provides a number between § and 32767 inclusive.

A non-zero SEGMENT INDEX selects an LSEG, in which case the

location of each public symbol defined in the record is taken as a

non=negative displacement (given by a PUBLIC OFFSET field) from the

first byte of the selected LSEG, and the FRAME NUMBER field must be

absent.

A SEGMENT. INDEX of a (leaal only if GROUP INDEX is also 9)

means that the location of each public symbol defined in the record

is taken as a displacement from the base of the FRAME defined by the

value in the FRAME NUMBER field.

44

8986 Object Module Formats Version 4.94

(Informal Discussion) The FRAME NUMBER is present iff

both the SEGMENT INDEX and GROUP INDEX are zero.

A non-zero GROUP INDEX selects some group; this group

is taken as the “frame of reference” for references to all

public symbols defined in this record, e.g., LINK=86 and

LOCATE~86 will perform the following actions: (1) Any

fixup of the form:
TARGET: EI(P)

FRAME: TARGET

(where "“P" is a public symbol in this PUBDEF record) will

be converted by LINK-86 to a fixup of the form:

TARGET: SI(L),d

FRAME: GI (G)

where “SI(L)" and “d" are provided by the SEGMENT INDEX

and PUBLIC OFFSET fields. (The “normal" action would have

the frame specifier in the new fixup be the same as in the

old fixup, viz.: FRAME: TARGET.) (2) When the value of a

public symbol, as defined by the SEGMENT INDEX, PUBLIC

OFFSET, and (optionally) FRAME NUMBER fields, is converted

to a {base,offset} pair, the base part will be taken as

the base of the indicated group. (If a non-negative 16-

bit offset cannot then complete the definition of the

public symbol's value, an error will occur.)

A GROUP INDEX of zero selects no qroup. LINK=-86 will

not alter the FRAME specification of fixups referencing

the symbol, and LOCATE-86 will take, as the base part of

the absolute value of the public symbol, the canonic frame

of the segment (either LSEG or PSEG) determined by the

SEGMENT INDEX field. (End of Informal Discussion)

PUBLIC NAME
The PUBLIC NAME field aives the name of the object whose

location in MAS is to be made available to other modules. The name

must contain 1 or more characters.

(Note) R&L's only constraint upon the characters

in names is that they lie within the range 28H (space)

throuch 7EH (tilde) inclusive. Other characters may

be used, but may produce awkward results when output

to listing devices, etc.

However, translators may proscribe the admissible

character set more strictly. (End of Note)

PUBLIC OFFSET

The PUBLIC OFFSET field is a 15-bit value, which is either the

offset of the Public Symbol with respect to an LSEG (if SEGMENT

INDEX > 9), or the offset of the Public Symbol with respect to the

specified FRAME (if SEGMENT INDEX = 4).

8986 Object Module Formats VerSion 4.9

TYPE INDEX
ee ree

The TYPE INDEX field identifies a single preceding TYPDEF (Type
Definition) Record containing a descriptor for the type of entity
represented by the Public Symbol.

46

8886 Object Module Formats Version 4.86

EXTERNAL, NAMES DEFINITION RECORD
(EXTDEF)

RK KKKKKARAKKRRAAREEKKKEK / / /RRERERREE ff [RERHKEREREE

* * * * & &

* REC * RECORD * EXTERNAL * TYPE * CHK *
* TYP * LENGTH * ° NAME * INDEX * SUM *
* 8CH * * * * *

*& * * * * *®

RAK KRHA AKER ff fREKKERERE / f [REKKRRKKREEK

This Record provides a list of external names, and for each

such name, the type of object it represents. LINK-86 will assign to

each External Name the value provided by an identical Public Name

(if such a name is found), provided that the two names name objects

of the same type.

This field provides the name, which must have non-zero length,

of an external object.

Inclusion of a Name in an External Names Record is an implicit

request that the object file be linked to a module containing the

same name declared as a Public Symbol. This request obtains whether

or not the External Name is actually referenced within some FIXUPP

Record in the module.

The ordering of EXTDEF Records within a module, together with

the ordering of External Names within each EXTDEF Record, induces an

orderina on the set of all External Names requested by the. module.

Thus, External Names are considered to be numbered: 1, 2, 3, 4, cece

These numbers are used as “External Indices" in the TARGET DATUM

and/or FRAME DATUM fields of FIXUPP Records, in order to refer to a

particular External Name. The format of an External Index has been

given earlier.

(Caution) (8886 External Names are numbered

positively: 1,2,3,... This is a change from 38089
External Names, which were numbered starting from

zero: @,1,2,... The reason is to conform with other

8686 Indices (Segment Index, Type Index, etc.) which

use 8 as a default value with special meanina. (End

of Caution)

External indices may not be forward referring. That is to say,

an external definition record definina the k‘th object must precede

any record referring to that object with index k.

47

8886 Object Module Formats Version 4.90

TYPE, INDEX

This field identifies a single precedina TYPDEF (Type
Definition) Record containing a descriptor for the type of object
named by the External Symbol.

48

8886 Object Module Formats version 4.6

LOCAL. SYMBOLS. RECORD
(LOCSYM)

RRR RRR RRRRERR ERR HE | f JRRRRRRERKE ff [RRR ERRERRER ERE REEE / / /RERRREEREES

&

*

*

&

*

*

REC
TYP
92H

* * * * * * *

* RECORD * LOCAL * LOCAL * LOCAL * TYPE * CHK *

* LENGTH * SYMBOLS * SYMBOL * SYMBOL * INDEX * SUM *

* * BASE * NAME x OFFSET * * *

* * * * * * *

HR RRR RHI RR RIK Jf [RERRERRRH ff [RRR REEEREERIERRERRRERE ff JERR REREEEES

| |

This record provides information about symbols that were used

in the source program input to the translator which produced the

module. The purpose of this information is to aid ICE and other

debugging programs.

The information provided by the LOCSYM record is processed but

not used by the R&L products.

The symbols in the record were originally defined in a source

module of name given by the most recently preceding T-MODULE HEADER

record.

LOCAL SYMBOLS. BASE

The LOCAL SYMBOLS BASE has the following format:

KERKK | f [REREKEREK ff J RERHKKRERERRERKER

* *

GROUP * SEGMENT * FRAME

*

*

* INDEX * INDEX * NUMBER

+
e
e

F
F

* *

RHR / f [RRR E ff /RRERRERRRERKEAEEE

| |
+conditional+

The LOCAL SYMBOLS BASE provides two things: (1) it gives a

“referent" value (location in MAS), with respect to which the value

(location in MAS) of every symbol in the record will be defined by

giving, for each symbol in the record, a non-negative offset; and

(2) it aqives an indication to LOCATE-86 as to how the final (20-bit)

values of the symbols should be decomposed into {base,offset} pairs.

The referent value is given by the SEGMENT INDEX or by the

FRAME NUMBER. If the SEGMENT INDEX field contains a number qreater

than 3, then the referent value is the location of the canonic frame

49

8886 Object Module Formats Version 4.86

of the LSEG Specified by the SEGMENT INDEX. (There must be no FRAME
NUMBER field in this case.) If both the GROUP INDEX field and the

SEGMENT INDEX field contain zero, then the next field is a FRAME
NUMBER: in this case, the referent value is the location of the

first byte of the specified frame.

If the GROUP INDEX is zero, the base will be the canonic frame
of the LSEG specified by the SEGMENT INDEX (if non-zero), or by the
FRAME NUMBER (if SEGMENT INDEX field contains zero). If the GROUP

INDEX is non-zero, the base will be the canonic frame of the Group
specified by the GROUP INDEX. (If the value of a symbol cannot be
described with respect to such a base, then LOCATE-85 will give a
warning.)

have SEGMENT INDEX > @. (End of note)

LOCAL SYMBOL NAME

This field provides the name of the symbol.

LOCAL SYMBOL OFFSET

The LOCAL SYMBOL OFFSET is a 16-bit value, which is either the
offset of the Local Symbol with respect to an LSEG (if SEGMENT INDEX
> 6), or the offset of the Local Symbol with respect to the

specified FRAME (if SEGMENT INDEX = @).

TYPE: INDEX
oe ree ee ee ee

The TYPE INDEX field identifies a single preceding TYPDEF

Record containing a descriptor for the tyve of entity represented by
the Local Symbol.

50

8886 Object Module Formats Version 4.9

LINE NUMBERS RECORD

(LINNUM)

RHR KARE RERHEK ff [REE KRERERERRAREEERERRRERRERRAERERAERE

* & * * R ¥&

* REC * RECORD * LINE * LINE * LINE * CHK
* TYP * LENGTH * NUMBER * NUMBER * NUMBER * SUM

+
Mb

wb

& * *® & &

RK KAKA RAKAKRKAAKKKREKE / / /RRKKKKKEERKERKERKERKRERERREREREKREEEAE

This record provides the means by which a translator may pass
to a debugger program, the correspondence between a line number in

source code and the corresponding translated code.

Since several independent source modules, with independent line

numbering, may be linked to form a single module, a full
identification of a source text line must include both its number,

and also the name of the original containing module. The latter
identification is provided by the previous T=MODULE HEADER Record.

LINE NUMBER BASE
i ae ee ee ee

The LINE NUMBER BASE has the following format:

RREKK / f [RRRKRERER / / /RERKEKKERKKKEEKER
* *

GROUP * SEGMENT * FRAME

*

*

* INDEX * INDEX * NUMBER
* * , #

* w

Re RREKKRKERE REERRKERRKRREREKEER /// ///
| |
+conditional+

b
b

oF

The LINE NUMBER BAS: has the same format and interpretation as
the LOCAL SYMBOL BASE described for the LOCSYM record. The SEGMENT

INDEX and (if present) the FRAME NUMBER fields determine the

location of the first byte of code corresponding to some source line
number. This location may be physical (SEGMENT INDEX is 4) or
logical (SEGMENT INDEX is non-zero). The value of the GROUP INDEX
field, if non-zero, informs LOCATE-86 what base-part to use for
describing the final, 2f#-bit location of the code line. An example
shows the use of a non-zero Group Index: A translator knows that

the code segment it is compiling is but one LSEG of many in a Group,
and thus references to pieces of the code segment are fixed up under

the assumption that the appropriate segment register contains the

location of the base of the group. At debug time, the user may tell

51

8686 Object Module Formats Version 4.9

ICE-86 to "GO TO LINE NUMBER 22 OF MODULE MODNAME". ICE-86 may

respond by executing a long jump to the appropriate location. This

long jump will set the CS register; it is important that. the CS

register be set in accordance with the assumptions made while

translating the code. This is the purpose of the GROUP INDEX field.

LINE. NUMBER
HR SPER TE OH aE REE EET

A line number between @ and 32767, inclusive, is provided in

binary by this field. ‘The high order bit is reserved for future use

and must be zero.

LINE. NUMBER OFFSET
On OE EN EE TE AEM AS NR

The LINE NUMBER OFFSET field is a 16-bit value, which is either

the offset of the line number with respect to an LSEG (if SEGMENT

INDEX > 6), or the offset of the line number with respect’ to the

specified FRAME (if SEGMENT INDEX = @).

52

8886 Object Module Formats Version 4.9

BLOCK DEFINITION RECORD
en CE ET! ERE AR OL SE RO Se OL TE:

(BLKDEF)

FRI RRR IR Sf [KRHA RR / / J ERRRRRREK / / JRERRERRK / / /TERKEREREER

*

*

*

*

*

*

REC
TYP
7AH

* * x * % & *

® RECORD * BLOCK * BLOCK * PROCEDURE * TYPE * CHK *

* LENGTH * BASE * INFORMATION* INFORMATION* INDEX * SUM *

* * * : * * . * ®

*

*
* * & & * &

RR RRR REAR RRR ERK / / [RREREREIRK / / JHRRRRERRE ff [RRKERERER / / /RRREREREES

+conditional+

This record provides information about blocks that were defined

in the source program input to the translator which produced the

module. A BLKDEF record will be generated for every procedure and

for every block that contains variables. The purpose of this

information is to aid ICE and other debugging programs.

The information provided by the BLKDEF record is processed but

not used by the R&L products.

The block in the record was originally defined in a source

module of name given by the most recently preceding THEADR record.

BLOCK INDEX values, used in the DEBSYM record, are defined

implicitly by the sequence of BLKDEF records-in the T=MODULE.

BLOCK BASE
ree eee ee ee

The BLOCK BASE has the following format:

RRERHK / f [RRKKRERKER ff [RK KREKEKEKRERERE

* *

GROUP * SEGMENT #* FRAME

INDEX * INDEX * NUMBER
*& *

* *

RHKRK / f/f [RRKKREKEK | / [KEK ERERERERERE REX

| |
+conditional+

+
+t

e
e

*

*

*

*

*

*x

The BLOCK BASE has the same format and interpretation as the

LOCAL SYMBOL BASE described for the LOCSYM record.

53

8986 Object Module Formats Version 4.9

BLOCK INFORMATION

The BLOCK INFORMATION block has the following format:

RRARHK / ff [RERREKEKKKERKKREKRRRKRRKKKKRERKEE

& & *& *

* * BLOCK * BLOCK #*
* NAME * OFFSET * LENGTH *
* x : *® *

& * * *

RREERK / f/f fRREKREKREREKEKEKKKARRERKEKEKEKKE

NAME

This field contains the name of the block. If the record

describes an unnamed block in the source code (e.g. a DO block with

no label in PL/M) the NAME will be of lenqth &.

BLOCK OFFSET

The BLOCK OFFSET is a 16-bit value which is the offset of the

lst byte of the block with respect to the referent value specified

by the BLOCK BASE.

BLOCK LENGTH

This field gives the length of the block in bytes.

54

8086 Object Module Formats Version 4.90

PROCEDURE INFORMATION

The PROCEDURE INFORMATION block has the following format:

KReEKK HWRHKKEKKKKERRRREEKEKREKKEKEKEKRKREKREEE

RETURN *
ADDRESS *
OFFSET o®

&

*

|

#
-
-
=
-
-
%

+
*

*
a
t
e

*

*
+

—
+

¥
+

+

ka

| |
| |

PILIG
| |
| |

KkaRKE * KREKERKEKEKRKEKRRERKEKREKRREKRRERERREKER

The P (Procedure) bit, if 1, indicates that the BLKDEF record

was generated from a procedure in the source. The RETURN ADDRESS

OFFSET is present only if P=1.

The L (LONG) bit tells whether the return address is) a 4-byte
value (CS and IP) or a 2=-byte value (IP only).

L=@ -> 2=-byte return address
L=l1 -> 4=byte return address

If P=@ the L bit has no meaning and is required to be 6g.

The RETURN ADDRESS OFFSET, a 16-bit value, is the byte offset
(from BP) of the yprocedure's return address in the procedure's

activation record on the stack.

TYPE INDEX

The TYPE INDEX field identifies a single preceding TYPDEF

record containing the type descriptor for the procedure or block

name. This field is present only if the NAME is non-zero.

(Note) Symbols defined in BLKDEF records

should not be repeated in DEBSYM records. (End of

Note)

55

8886 Object Module Formats Version 4.9

BLOCK END RECORD
(BLKEND)

RAMKKEKEKEKKREREKERKKEERREKKE

* * * *

* REC * RECORD * CHK *
* Typ * LENGTH * SUM *
* 7CH * * *
* * * ®

REKKKKEKAKKEKEKKKEKEKEKREKERE

This record, together with the BLKDEF record, provides

information about the scope of variables in the source program.

Each S8LKDEF record must be followed by a BLKEND record. The order

of the BLKDEF, debuq symbol records, and BLKENDs should reflect the

order of declaration in the source module.

(Note) For tranSlators whose variables don't have

scope (e.g. ASM86) the ordering of the records

need not reflect the order of declaration in the

source module. (End of Note)

56

8886 Object Module Formats Version 4.9

DEBUG. SYMBOLS, RECORD
(DEBSYM)

eK KERR RRR EERE ff [RRR ff [ER RRERIERERERERERERER / / /RRRREEREEKE

*

*

*

*

*

*

REC

TYP

7EH

* * * x PY * *

* RECORD *x FRAME * SYMBOL * * TYPE * CHK *

* LENGTH *ITNFORMATION* NAME * OFFSET * INDEX x SUM *

* * * * * *

x * * * * * *

KARR RRR RRR ERR K | / [RRR RRRRIK ff [RE RRERERRIERERERRREER / / /RERRREEKEE

tener ~--repeated --- 2-9 --- ~——+

This record provides information about all local symbols

including stack and based symbols. The purpose of this information

is to aid ICE and other debugging programs.

The information in this record is processed but not used by the

R&L products.

The symbols in the record were originally defined in a _ source

module of name given by the most recently preceding T-MODULE HEADER

record.

The scope of the symbols in the record is defined to be the

block of the most recently preceding BLKDEF whose extent has not yet

been closed by a BLKEND. If no such BLKDEF exists the symbols are

global to the source module of name given by the most recently

preceding THEADR.

FRAME. INFORMATION

This field gives information about the frame of the symbols

defined in the record. It's format is as follows:

ReKKKK KKK / / /KREKK

* * *

* FRAME® *
*INFO * DATUM *
* * *

* *& *

ke RKRKKKKKE | / /RRKKE

The FRAME INFO byte has the following format:

KRAKKKRKKRKKKKKAERKEKKEKRKKEKREEKRKERE

* | | | | | | | *

*BI|LI otal @a i FRAME *

* | | | | | METHOD *
KKK KHEKERKEREKKEKERERERRKRKEEREKRREKE

57

8086. Object Module Formats = Version 4.90

The B (Based) bit, if 1, means that the location in MAS defined

by the FRAME INFORMATION and OFFSET fields contains a value that is
the address of a symbol.

The L (Long) bit tells the length of this value.

L=@ => 2 bytes
L=1 => 4 bytes

If L=9 the frame part of the symbol address is defined to be
the frame given by the FRAME INFORMATION field.

If B=0, the location defined by the FRAME INFORMATION and
OFFSET fields is the lecation of the symbol. In this case the L
bit has no meaning and is required to be Q@.

The FRAME METHOD field defines what kind of data is in the
DATUM field.

If FRAME METHOD=@, the DATUM has the format:

Ke / f/f [REEKRREKKEK [| f /REHRKKRHERKKKKRKEREKE

* * :

GROUP * SEGMENT * FRAME

x

*

* INDEX * INDEX * NUMBER

+
e
b

&

* &

RARER RRARREKEK KRaEKKKKKEKKEKKRKKEKEK //f ///

+conditional+

The interpretation of the DATUM fields in the above format is
identical to the interpretation of the LOCAL SYMBOLS BASE in the

LOCSYM record.

If FRAME METHOD=1, the DATUM has the formats

RAR / | [RRREK

& *

* EXTERNAL *
* INDEX *
we w

& *

* 9 eke / / [eee

53

8986 Object Module Formats Version 4.9

If FRAME METHOD=2, the DATUM has the format:

RREKK | f [RRKRER

BLOCK
INDEX

+
t

&

H

*

*

*

*

*

Rae / / JRERKK

FRAME METHODS of 3 to 7 are illegal.

The FRAME METHOD field also specifies what kind of information
is in the OFFSET field (see below).

SYMBOL NAME

This field provides the name of the symbol.

OFFSET

The OFFSET field contains a 16-bit value which is interpreted
as follows:

If FRAME METHOD is @ then this field is the offset with respect
to the FRAME NUMBER or SEGMENT specified by the DATUM of the FRAME
INFORMATION field.

If FRAME METHOD=1 then this field is the byte offset from the
external symbol specified by the DATUM of the FRAME INFORMATION
field.

If FRAME METHOD=2 then this field is the byte offset (from BP)

in the activation record of the block specified by the DATUM of the
FRAME INFORMATION field.

TYPE INDEX

The TYPE INDEX field identifies a single preceding TYPDEF
record containing a descriptor for the type of entity represented by
the symbol.

(Note on LOCSYMs) A DEBSYM record whose FRAME

INFO field is @ is exactly equivalent to a LOCcSYM
record. (End of Note on LOCSYMs)

59

8986 Object Module Formats Version 4.9

RELOCATABLE ENUMERATED DATA RECORD

(REDATA):

RK HRA K RRR EER REE EK ff JERE KER EER ER RE EERERREREEREREEN

* * * *& * *

* REC * RECORD * DATA * DATA. * DAT * CHK

* TYP * LENGTH * RECORD * RECORD * * SUM

* 72H * * BASE * OFFSET * *

® * * * * *

HR ERE AKER KHER ff /RERERERR EK KERR REE EERE EEEKERER

t |
+-rpt—+

+
+

&
+

This record provides contiquous data from which a portion of an

8985 memory image may eventually be constructed. The data may be

loaded directly by an 8886 loader, with perhaps some base fixups.

For this reason the record may also be called Load-Time Locatable

(LTL) Enumerated Data Record.

The data provided in this record may belong to any LSEG or

Group or it may be assigned absolute 8885 memory addresses and _ be

divorced from all LSEG/Group information. The data in this record

is subject to modification by FIXUPP records, if any, which follow.

This record may be generated by translators or (8085 based)

LINK-86 to produce loadable modules, and will be converted to PEDATA

record by the LOCATE-86 program.

DATA RECORD BASE
er ee ee eee ee ee ane

The DATA RECORD BASE has the following format:

RRRK f/f [RREKERKKE / f [RRKREERERKEKEEKERE

eo *&

- GROUP * SEGMENT * FRAME
INDEX * INDEX * NUMBER

. * . *

® . ‘ *

RRR f fRRRERRERE /f [RRRRRRERRE RR RRR

| |
+conditional+

+
t

et
&

*

*

*&

*

*

*.

The DATA RECORD BASE specifies the base relative to which the

final ‘address of the data record may be defined. It has the same

format and interpretation as the LOCAL SYMBOL BASE described for the

LOCSYM record.

DATA RECORD OFFSET

This field specifies an offset of the first byte of the DAT
field either with respect to an LSEG (if SEGMENT INDEX > 8) or with

8986 Object Module Formats Version 4.4

respect to the specified FRAME (if SEGMENT INDEX = 8). Successive

data bytes in the DAT field occupy successively higher locations of

memory.

DAT

If one or more FIXUPP records follow then this field provides

up to 1924 consecutive bytes of load-time locatable or absolute

data. Otherwise, the repeated field is constrained only by the

RECORD LENGTH field.

(Note on data record size) All data bytes in a

data record must be within the frame specified by the

data record. This is true for all 6 data record types

(REDATA, RIDATA, PEDATA, PIDATA, LEDATA, LIDATA).

(End of Note on data record size).

61

8886 Object Module Formats Version 4.9

RELOCATABLE. ITERATED. DATA. RECORD
(RIDATA)

RHEKKKEAKARAKRKARKKRARREEER ff /REKREREEKRRARERAKREAEKE / f fEREREREKHEE

® * * w * *

* REC * RECORD * DATA * DATA * ITERATED * CHK
* TYP * LENGTH * RECORD * RECORD * DATA * SUM

+
+

hb
&

& ® & ® *

RREAKRAAKEKKKKKKKEKAREKK | f [RERREERRERERERMREREER ff [RRERREEKKEER

| |
+-repeated-<-+

This record provides contiquous data from which a portion of an
89856 memory image may eventually be constructed. The data may be
loaded directly by an 8686 loader, with perhaps some base fixups.
For this reason the record may also be called Load-Time Locatable
(LTL) Iterated Data Record.

The data provided in this record may belong to any LSEG or
Group or it may be assiqned absolute 8086 memory addresses and be
divorced from all LSEG/Group information. The data in this’ record

is subject to modification by FIXUPP records, if any, which follow.

This record may be qenerated by translators or (8086 based)
LINK-86 to produce loadable modules, and will be converted to RIDATA
record by the LOCATE-846 program.

DATA RECORD BASE

The DATA RECORD BASE has the following format:

RRR / / [RRREKREEK | / /RRRKKKEKKE ARE KEKE
* * *

* GROUP * SEGMENT * FRAME
* INDEX * INDEX * NUMBER
* * &
* * *
HR RIK / ff [RRR RRR |] [FIR IRK IRIE RRR KH K

| |
+conditional+

OF

The DATA RECORD BASE specifies the base relative to which the
final address of the data record may be defined. It has the same
format and interpretation as the LOCAL SYMBOL BASE described for the

LOCSYM record.

DATA RECORD OFFSET
me ne ee ee an ne ne re

This field specifies an offset of the first byte of the
ITERATED DATA BLOCK field either with respect to an LSEG (if

62

8086 Object Module Formats - Version 4.9

SEGMENT INDEX > @) or with respect to the specified FRAME (if
SEGMENT INDEX = @). Successive data bytes in the ITERATED DATA

BLOCK field occupy successively higher locations of memory.

ITERATED DATA BLOCK

This repeated field is a structure specifying the repeated data
bytes. It is a structure that has the following format:

HHKKHRKAKHKHEREKKEREKHREKRERERK / / /REKRKE

* *

REPEAT * BLOCK * *
COUNT * COUNT * CONTENT *

*® *& *

* * *

*

*

k

*

*

*

RHRKHKEHKRKKKKKEKKRERKEKKKERKKEKEE / / /REKK

REPEAT COUNT
we ee ee ee

This field specifies the number of times that the CONTENT
portion of this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT
must be non-zero.

BLOCK COUNT
ww we ee ee

This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK.

If this field has value zero then the CONTENT portion of this
ITERATED DATA BLOCK is interpreted as data bytes. If non-zero then
the CONTENT portion is interpreted as that number of ITERATED DATA

BLOCKS.

CONTENT

This field may be interpreted in one of two ways, depending on
the value of the previous BLOCK COUNT field.

If BLOCK COUNT is zero then this field is a 1 byte count
followed by the indicated number of data bytes.

If BLOCK COUNT is non-zero then this field is interpreted as
the first byte of another ITERATED DATA BLOCK.

(Note) From the outermost level, the number of

nested ITERATED DATA BLOCKS is limited to 17, i.e.,

the number of levels of recursion is limited to 17.

(End of Note)

43

8886 Object Module Formats Version 4.9

PHYSICAL ENUMERATED DATA RECORD
(PEDATA)

KK HHA EREKKHREREREREREREKEKERERERERREKKEREE KE
* * * * _ * *

* REC * RECORD * FRAME * OFF * * CHK *

* TYP * LENGTH * NUMBER * SET * DAT * SUM *
* 84H * * x * * *

* * * * * * *

KKK KKK ERERREEKK KEKE KER EUEKEERRERRERREEKRKERRRERE

| |
+-rpt—-+

This record provides contiguous data, from which a portion of

an 8986 memory image may be constructed. The data belongs to _ the

“unnamed absolute segment" in that is has been assigned absolute

8986 memory addresses and has been divorced from all LSEG

information. The data is subject to modification by FIXUPP records,

if any, which follow. If there are FIXUPP records following, then

the RECORD LENGTH is constrained to be less than or equal to 1928.

This record may be aqenerated by translators to produce a

loadable absolute data record and will be also generated by LOCATE-

84.

FRAME NUMBER
eee eam ae ee re

This. field specifies a Frame Number relative to which the data

bytes will be loaded.

OFFSET

This field specifies an offset relative to the FRAME NUMBER

which defines the location of the first data byte of the DAT field.

Successive data bytes in the DAT field occupy successively higher

locations of memory. The value of OFFSET is constrained to be in

the range @ to 15 inclusive. If an OFFSET value greater than 15 is

desired then an adjustment of the FRAME NUMBER should be done.

DAT

If one or more FIXUPP records follow then this field provides

up to 19824 consecutive bytes of an 8886 memory imaqde. Otherwise,

the repeated field is constrained only by the RECORD LENGTH field.

64

8886 Object Module Formats Version 4.9

PHYSICAL ITERATED DATA. RECORD
(PIDATA)

RH KH K KKH KERRIER ERE E RE REE RERKEEEE / / /RRREREKERKE

* * *® * * * *

* REC * RECORD * FRAME * OFF * ITERATED * CHK *
* TYP * LENGTH * NUMBER * SET * DATA * SUM #*
* 86H * * * * BLOCK #* *
*® & * * x & &

Kk IRR KEKE REE EERE REREERKREREERRERE ff f/REKREREKEKE

+=-repeated-—+

This record provides contiquous data, from which a portion of

an 8986 memory image may be constructed. It allows initialization

of data segments and provides a mechanism to reduce the Size of

object modules when there are repeated data to be used to initialize

a memory image. The data belongs to the “unnamed absolute seqment"

in that it has been assiqned absolute 8086 memory addresses and has

been divorced from all LSEG information. The data is subject to

modification by following FIXUPP records if any. If there are

FIXUPP records then the ITERATED DATA BLOCK length is constrained to

be less than 1925.

This record may be generated by translators to produce a

loadable absolute data record and will be also generated by LOCATE=

84.

FRAME NUMBER
This field specifies a frame number relative to which the data

bytes will be loaded.

OFFSET

This field specifies an offset relative to the FRAME NUMBER

which defines the location of the first data byte in the ITERATED

DATA BLOCK. Successive data bytes in the ITERATED DATA BLOCK occupy

successively higher locations of memory. The ranqe of OFFSET is

constrained to be between 9% and 15 inclusive. If a value larqer

than 15 is desired for OFFSET then an adjustment of FRAME NUMBER

should be done.

ITERATED DATA: BLOCK

Same as for RIDATA record.

65

8986 Object Module Formats Version 4.6

LOGICAL. ENUMERATED DATA, RECORD
(LEDATA)

HREKKKAEKEKKREKRAKRKEREREKE / f /REKREREREREEEKRERRREEREKREREKREKE

* * *& * & *&

* REC * RECORD * SEGMENT * ENUMERATED* * CHK

*& ® * * *

RKRKK KAA ERREKEE ff JRREKRKREKREKRERKERRKRERERERKEER

| |
+-rpt—+

*
*
*

AOH * * * OFFSET * * *
*
*

This record provides contiguous data from which a portion of an
8886 memory image may eventually be constructed. The data will
probably NOT be loaded directly by an 8985 loader as it must be
further processed by'the 80886 R&L products.

The data provided in this record may belond to any. LSEG. The
BASE portion of the address in the case of an absolute seqment will
be found in the SEGMENT DEFINITION RECORD specified by the SEGMENT
INDEX. If the SEGMENT INDEX specifies a seament whose alianment
attribute is not absolute then the data provided by this record is

relocatable.

This record may be converted to a REDATA RECORD by the (8986
based) LINK~86 program and will be converted to a PEDATA RECORD by

the LOCATE-86 program.

SEGMENT INDEX

This field must be non-zero and specifies an index relative to
the SEGMENT DEFINITION RECORDS found previous to the LEDATA RECORD.

The SEGMENT DEFINITION RECORD may specify that the data is absolute
as one of the attributes of the segment. In this case a Frame
Number is provided in the SEGDEF record. Absolute data must be able

to be placed into LEDATA RECORDs so that aroupingqg of relocatable
LSEG's with absolute LSEG‘'s can be achieved.

ENUMERATED. DATA. OFFSET

This field specifies an offset that is relative to the base of
the LSEG that is specified by the SEGMENT INDEX and defines’ the
relative location of the first byte of the DAT field. Successive
data bytes in the DAT field occupy successively higher locations of
memory. If the SEGMENT INDEX specified an absolute LS&G then the
offset is relative to the Frame Number provided in the corresponding
SEGDEF RECORD.

DAT

66

8986 Object Module Formats Version 4.9

This field provides up to 1624 consecutive bytes of relocatable

or absolute data.

AT

8086 Object Module Formats Version 4.9

LOGICAL ITERATED DATA RECORD
(LIDATA)

HRI RRR IR RR IRI ff [RRR RER EERE RRR ff J RRRRKEEEEEKE

* * * * * * *

* REC * RECORD * SEGMENT * ITERATED -* ITERATED * CHK *
* TYP * LENGTH * INDEX * DATA * DATA * SUM *
* A2H * * * OFFSET * BLOCK * *
* * x & * * x
KRRKRREEREKKKEKRKEKKKEKRER KREEKRKRKEKKKEKKKEKEKRKKKEKE eK RAKKRKRERK Sf ///

+-repeated--+

This record provides contiguous data, from which a portion of
an 8686 memory image may eventually be constructed. The data will
probably NOT be loaded directly by an 8985 loader as it must be
further processed by the 80986 R&L products.

The data in this record may belong to any LSEG. The BASE
portion of the address in the case of named absolute data, will be

found in the SEGDEF record specified by the SEGMENT INDEX. If the
SEGMENT INDEX specifies an LSEG other than an absolute LSEG then the
data provided by this record is relocatable.

This record may be converted to a RIDATA RECORD by the (8986
based) LINK-86 program and will be converted to a PIDATA RECORD by
the LOCATE=86 program.

SEGMENT INDEX
ee ee A ae ee

This field must be non-zero and specifies an index relative to

the SEGDEF records found previous.to the LIDATA RECORD. The SEGDEF
record may specify that the data is absolute as one of the
attributes of the LSEG. -In this case a Frame Number is provided in
the SEGDEF record. The LIDATA RECORD is required to allow qrouping
of relocatable LSEG‘s with absolute LSEG‘'s.

ITERATED DATA OFFSET

This field specifies ‘an offset that is relative to the base of
the LSEG that is specified by the SEGMENT INDEX and defines the
relative location of the first byte in the ITERATED DATA BLOCK.
Successive data bytes in the ITERATED DATA BLOCK occupy successively
higher locations of memory. T&£ the SEGMENT INDEX specified an
absolute LSEG then the offset is relative to the Frame Number
provided in the corresponding SEGDEF RECORD.

ITERATED DATA BLOCK
ere ee er ee ee oe

6y

O°y UOTSIaA

*pz0da1 WLVGIN euy JOZF se owes

sjewiog atnpow yoaelqo 98488

8886 Object Module Formats Version 4.94

FIXUP RECORD
(FIXUPP)

RHRARRRAKKHRRAKAEKERKEKE | / [KKK AKER

* * * * *

* REC * RECORD * THREAD * CHK *
* TYP * LENGTH * or * SUM *
* OCH * * FIXUP * *
* x *& * *

ARR RARERERIR ERR | / [RRR RRR IK

| |
t——--7 ptt

This record specifies 9 or more fixups. Each fixup requests a
modification (fixup) to a LOCATION within a previous DATA record.
Each fixup is specified by a FIXUP field that specifies 4 data: a
location, a mode, a target and a frame. The frame and the target

may be specified totally within the FIXUP field, or may be snecified
by reference to a preceding THREAD field.

A THREAD field specifies a default tarqet or frame that may

subsequently be referred to in identifying a target or a frame.
Eight threads are provided; four for frame specification and four
for target specification. Once 4 target or frame has been specified
by a THREAD, it may be referred to by following FIXUP fields (in the
same or following FIXUPP records), until another THREAD field with
the same type (TARGET or FRAME) and thread number (8 = 3) appears
(in the same or another FIXUPP record).

THREAD

THREAD is a field with the following format:

RHREKKKEKEE | / [RREKK

* *

* TRD * INDEX or
* DAT * FRAME
* * NUMBER
* &

RRREKRAEKRER / / [/KKREKK

|
+conditional+

%
O
O

The TRD DAT (ThReaD DATa) subfield is a byte with this internal
structure:

KRKKKKKKREKERKARRE RAK KKK RK

* | | | | | | | *
*g|odtiz METHOD | THRED *

* | | | | | | | *
RREKKEKKREKREKKEEKEEKRKEKREKRKEREKKEREKERK

76

8886 Object Module Formats Version 4.96

The 'Z' is a one bit subfield, currently without any defined

function, that is required to contain 96.

The ‘D' subfield is one bit that specifies what type of thread

is being specified. If D=@ then a target thread is being defined

and if D=1 then a frame thread is being defined.

METHOD is a 3 bit subfield containing a number between 8 and 3
c

(D=8) or a number between 9 and 6 (D=1).

If D=G, then METHOD: = (9, 1, 2, 3, 45 5, 6, 7) mod 4, where the

a, see, 7 indicate methods TG, ..., T7 of specifying a target.

Thus, METHOD indicates what kind of Index or Frame Number is

required to specify the target, without indicating if the target

will be specified in a primary or secondary way.

If D=1, then METHOD = @, 1, 2. 3, 4, 5, 6 corresponding to

methods FO, ..., F6 of specifying a frame. Here, METHOD indicates

what kind (if any) of Index or Frame Number is required to specify

the frame.

THRED is a number between 9 and 3, and associates a “thread

number“ to the frame or target defined by the THREAD field.

INDEX or FRAME NUMBER contains a Segment Index, Group Index,

External Index, or Frame Number depending on the specification in

the METHOD subfield. This subfield will not be present if-F4 or F5

or F6 are specified by METHOD.

FIXUP

FIXUP is a field with the following format:

KKK ARERR HAKKAR | f/f /REKKKKREEK / / /RERKEKEKRER / / fRRKKE

* * * & *

* LOCAT * PIX * FRAME * TARGET * TARGET

* * DAT * DATUM * DATUM * DIS=-

* * * * * PLACEMENT
* F * * *
HAIR RRR IK / f JERRHRERER f/f [RRRRERERE ff [RRRKK

+conditional+conditional+conditional+

t+
+

+
+

LOCAT is a byte pair with the following format:

Se HK HH I RIK RR RIK KKK RIKER RIK RRA REE RE REE E KR ERK

* | | | | | | | * | | | | | | | *
* 1] | Mts f LOC | DA T*A RECORD OF FSET #*

* | | | | | | | * | | | | | | | *
KRHA KERKKKREKRKKREREHMKEREEREREKRREKEEEEEEKKRKEKKEKEEEEREKKEKEKREKE

71

8985 Object Module Formats Version 4.94

M is a one bit subfield that specifies the mode of the fixups:

self-relative (M=0) or segment relative (M=1).

(Note) Self-relative fixups may NOT be applied to

RIDATA, LIDATA, or PIDATA records. (End of Note)

S is a one bit subfield that specifies that the length of the

TARGET DISPLACEMENT subfield, if present, (see below), in this FIXUP

field will be either two bytes (containing a 16-bit non-negative
number, S=0) or three bytes (containing a signed 24-bit number in

2's complement form, S=1).

(Note) 3-byte subfields are a possible future
extension, and are not currently supported. Thus, S=9

is currently mandatory. (End of Note)

Loc is a 3 bit subfield indicating that the byte(s) in the
preceding DATA Record to be fixed up are a 'lobyte' (LOC=9), an
‘offset' (LOC=1), a ‘'base' (LOC=2), a ‘pointer' (LOC=3), or a

‘hibyte’ (LOC=4). (Other values in LOC are invalid.)

The DATA RECORD OFFSET is a number between @4 and 1423,

inclusive, that gives the relative position of the lowest order byte
of LOCATION (the actual bytes being fixed up) within the preceding
DATA record. The DATA RECORD OFFSET is relative to the first byte

in the data fields in the DATA RECORDs.

(Cautionary Note) If the preceding DATA record is an IDATA
record, it is possible for the value of DATA RECORD OFFSET to

designate a “location” within a REPEAT COUNT subfield or a BLOCK

COUNT subfield of the ITERATED DATA field. Such a reference is

deemed an error. LINK-86's and LOCATE-86's action on such a

malformed record is undefined, and probably awkward. (end of

Cautionary Note)

FIX DAT is a byte with the following format:

RR KKK KRRKKERKRKEKRERKKEREKEREK ERE

* | | | | | | | *
x F | FRAME | T | P | TARGT *

* | | | | | | | *
RRR HERRKEKEKKKEKRERRRERRERRRREKREE

F is a one bit subfield that specifies whether the frame for
this FIXUP is specified by a thread (F=1) or explicitly (F=9).

FRAME is a number interpreted in one of two ways as_ indicated

by the F bit. If F is zero then FRAME is a number between 3 and 6

and corresponds to methods F@, ..., F6 of Specifying a FRAME. If

F=l then FRAME is a thread number (9-3). It specifies the frame

most recently defined by a THREAD field that defined a frame thread

with the same thread number. (Note that the THREAD field may appear

in the same, or in an earlier FIXUPP record.)

72

8086 Object Module Formats version 4.9

T is a one bit subfield that specifies whether the target

specified for this fixup is defined by reference to a thread (T=1),

or is aiven explicitly in the FIXUP field (T=9).

P is a one bit subfield that indicates whether the target is

specified in a primary way (requires a TARGET DISPLACEMENT, P=8) or

specified in a secondary way (requires no TARGET DISPLACEMENT, P=1).

Since a target thread does not have a primary/secondary attribute,

the P bit is the only field that specifies the primary/secondary

attribute of the target specification.

TARGT is interpreted as a two bit subfield. When T=, it

provides a number between 9% and 3, corresponding to methods TH, eo,

T3 or T4, «ee, T7, depending on the value of P (P can be interpreted

as the high order bit of TO, ..-, T7). When the target is specified

by a thread (T=1) then TARGT specifies a thread number (0-3).

FRAME DATUM is the “referent" portion of a frame specification,

and is a Segment Index, a Group Index, an External Index, or a Frame

Number. The FRAME DATUM subfield is present only when the frame is

specified neither by a thread (F=) nor explicitly by methods F4 or

F5 or FS.

TARGET DATUM is the “referent” portion of a tarqet

specification, and is a Seqment Index, a Group Index, an External

Index or a Frame Number. The TARGET DATUM subfield is present only

when the target is not specified by a thread (T=).

TARGET DISPLACEMENT is the 2- or 3=-byte displacement required

by “primary” ways of specifying TARGETs. This 2— or 3=-byte subfield

is present iff P=.

8886 Object Module Formats Version 4.9

OVERLAY DEFINITION. RECORD
(OVLDEF)

RH KRKKHEKERRRERKEREKRKRR ff [RRRREKEEK| | | [RRRERRHRE / / /REKKEKEKARER
* * * * * &

REC * RECORD * OVERLAY * OVERLAY * OVERLAY * CHK *

®

¥

* TYP * LENGTH * NAME * LOCATION * ATTR * SUM *
* 76H * * * * * *
& ® ®& *® * ® &

RHA AKKAKAKKEAKRKEKKEKEK / f /RERRHRRKE, | | | RAKHERKRKK // /EKKKRKKKKEKK

This Record provides the overlay name, the location of the
overlay in the object file, and the attributes of the overlay. A
loader may use this record to locate the data records of the overlay
in the object file.

OVERLAY. NAME

The OVERLAY NAME field provides a name by which a collection of
l or more LSEG's and/or Groups may be referenced for loading.

The ordering of OVLDEF Records within a module induces an
ordering on the set of all Overlays defined in the module. Thus,
OVLDEF records are considered to he numbered: 1, 2, 3, 4, cee
These numbers are used as “Overlay Indices“ in the OVERLAY ATTR
field of following OVLDEF records.

Overlay indices may not be forward referring. That is to say,
an overlay definition record defining the k'th overlay must precede
any record referring to that overlay with index k.

The OVERLAY LOCATION is a 4=byte field which qives the location
in bytes relative to the start of the file of the first byte of the
records in the overlay.

OVERLAY. ATTR

The OVERLAY ATTR field has the following format:

RRKKKERRKEKE (| / fPRRKKREKEKE / / /REKKEK

* & *

* * SHARED * ADJACENT
-* SA * OVERLAY * OVERLAY

x * INDEX * INDEX
% & *

RRHKKERKEKRKK [| f [REKKKKEKE / | [/REKKE

| | |
+conditionalt+conditional+

4
$

F

74

8886 Object Module Formats Version 4.86

The SA subfield provides information for memory layout. It has

the following format:

RK HERRERA KE REREEREREREEREKE

* | | | | | | | *
Z2i{)Zz2i{1z2i4)2ij2z2dist+sez4ysta

* | | | | | | | *
RHKKKKEKEKKHEKKEKRKARKKHKREKKEKEERRKEER

Z's indicates that these l-bit field have not been assigned a

function. These bits are required to be zero.

S (shared) is a l-bit field that, if 1, indicates that the

overlay will have to be loaded at the same location as the overlay

indicated in the SHARED OVERLAY INDEX field.

A (adjacent) is a l=-bit field that, if 1, indicates that the

overlay will have to be loaded next in memory to the overlay
indicated in the ADJACENT OVERLAY INDEX field.

The SHARED OVERLAY INDEX subfield, present if bit S in the SA
subfield is 1, points to a previously defined OVLDEF record and

indicates that the segments with same seqment names and class names
and/or the groups with same names in the two overlays must be loaded
at the same location.

The ADJACENT OVERLAY INDEX subfield, present if bit A in the SA
subfield is 1, points to a previously defined OVLDEF record and
indicates that the segments and/or groups in the overlay defined by
the current OVLDEF record must be loaded adjacent to the ones with
the same names in the indicated overlay.

75

8886 Object Module Formats Version 4.9

END. RECORD
ee ee

(ENDREC)

RREKKKEKHEKREKEERKEREERKREKERREEEKREER

* x * * Fd

* REC * RECORD * END * CHK *
* TYp * LENGTH * TYP * SUM *
* 78H * * * *

* ® *® * *

REKKKRERRKKRKKERERERKEEKRKEEKEKHKRERKREEK

This record is used to denote the end of a set of records such

as a block, and an overlay.

END. TYP
ee et re

This field specifies the type of the set. It has the following

format:

REEKRKEKEKEEKEKREKKKKERKKEEKRKEKEKKEERKEKEEEEK

| | | | | | | *
*z21z2i{2tit2tit2i2i iqtTrye *
» | | | | | | | *
RKREKKRHEEEKKKEEKREKEKEREREEEREKREKEEEE

TYP is a two bit subfield that specifies the following types of

P TYPE OF END.
a ee

Y
a
1 End of block
2 (Illegal)

3 (Illegal)

Z indicates that this bit has not currently been assianed a
function. These bits are required to be zero.

8985 Object Module Formats Version 4.9

REGISTER INITIALIZATION RECORD
=~ ewe ew ee ewe Re

KKAAKKKKKEKKEKKEKKEREEKEEKRERE | f /REKKKRKREREKK

* *® * & * *

* REC * RECORD * REG * REGISTER * CHK *
* Typ * LENGTH * TYP * CONTENTS * SUM *
* 70H * * * * *

* * & * * *

RAH KKRRKKEKERERERERKEEREREREREK | f/f /RRRKEKKEKEKEK

| | |
+-~---repeated----- +

This record provides information about the 8086

registers/register-pairs: CS and IP, SS and SP, DS, and ES. The

purpose of this information is for a loader to set the neccessary

registers for initiation of execution.

REG. TYP
eee ae een oe

The REG TYP ‘field provides the regqister/reaqister-pair name. It

also indicates the type of register content specification given in

the next field. It has the following format:

KHER KHEKHKEKKREKRERKEKEREREREKRKKEAKEKER

* | | | | | 1 | *
* REGID | Zz] zIzIlztizituvu*
* | | | | | | | *
REKREKKEKREKKKREKERKERREKERERKEKRERER

Z's are l-bit subfields which indicate that these bits have not

currently been assigned a function. These bits are required to be

Zero e

REGID is a _ two bit subfield that specifies the name of the

registers/register- pairs as follows:

REGID REGISTER/REGISTER=PAIR
a ee ee ern ere ge ee Re ee ne eee

CS and IP

SS and SP

DS

ES W
N
r
 G

S

L is a one bit field that indicates whether the REGISTER

CONTENTS field is to be interpreted as a logical address (L=1) that

reauires fixing up by LINK-86/LOCATE-85, or as a pair of base and

offset specifications (L=0) appropriate for the initialization of

the corresponding register/register- pair.

77

8986 Object Module Formats Version 4.8

REGISTER CONTENTS

The REGISTER CONTENTS field has either of the following
formats:

te ee pe eR reer ea

HEAKKRKRERERKRK f/f [/RREKRKREEE ff [RRREKKKKKRKKEKKEKE

*& *& *& *

* REG * FRAME * TARGET * TARGET

*
+

+
t

we * :

RHEERKKRERE ff /RRREKEREK / f/f fJERKEKEKKKEKKKKEKE

| | | |
+conditionalt+conditional+conditional+

In this case the register contents are specified in exactly the
Same manner as in the specification of the mapping of a logical
address to a physical address as used in the discussion of fixups
and the FIXUPP record. The above subfields of the REGISTER CONTENTS

field have the same semantics as the FIX DAT, FRAME DATUM, TARGET
DATUM, and TARGET DISPLACEMENT fields in the FIXUPP record. Frame
method F4 is not allowed.

Second form (L=@)

LINK=86/LOCATE-86 will convert the above REGISTER CONTENTS
field into a field having the following format:

RHR f/f fPRREKREKREKKEKKKEERK

* *

* REGISTER * REGISTER
* BASE * OFFSET
* &

® &

BREE | f [RRRREKKKKEKKKKKRKKE

+conditional+

+
+

F
F

The REGISTER BASE field has,the following format:

RRR / f JRRERIRREK / / JKEREREERERKEREEKE
* *

GROUP * SEGMENT * FRAME

x
&

* INDEX * INDEX * NUMBER

% * *

RHE Lf /REREKEKRER f/f [REREKKEREKEKKKKKE

| |
+conditional+

78

8986 Object Module Formats

Th

field i

record.

Version 4.9

e format and the interpretation of the above REGISTER BASE

LOCSYM s identical to the LOCAL SYMBOL BASE described in the

The REGISTER OFFSET field (present only -if REGID

specifies an offset relative to the Seqment (if SEGMENT INDEX

or to the FRAME (if SEGMENT INDEX = 9).

(Note) Once the segments and/or groups are

absolutely located (by a loader or LOCATE-86), the

base of the object . pointed to by the REGISTER BASE

field is the appropriate value for the initialization

of the corresponding base register. The offset value

for the initialization of either the IP register
(REGID = 8) or the SP register (REGID = 1) is
determined as follows:

If GROUP INDEX = @, the offset value is given by

the value specified in the REGISTER OFFSET field.

Tf GROUP INDEX > 9@, the offset value is the

offset relative to the base of the specified group of
the location specified by the pair (SEGMENT INDEX,

REGISTER OFFSET). (End of Note)

<
>

1)
0)

719

8886 Object Module Formats - Version 4.80

MODULE END RECORD

(MODEND)

KH KKK ERE KERR ERK ER EKER RERKEE | / /REKKKKKAKEKE
* * * * * *

* REC * RECORD * MOD * START * CHK *
* TYP * LENGTH * TYP * ADDRS * SUM *
* SAH * * * * *
* * * k * *
RRR KEE EK KR RKKEREREEREH / / [RRKERKEKRKREK

| |
+conditional+

This record serves two purposes. It denotes the end of a

module and indicates whether the module just terminated has a

specified entry point for initiation of execution. If the latter is

true then the execution address is specified.

MOD. TYP
ee ee

This field specifies the attributes of the module. The bit
allocation and associated meanings are as follows:

KRHREEKKKREKKRHEKRKHEKAREKKHEKKKREKRKERREREEEK

* | | | | | | | *
* MATTR | Zz 1 2{'2{12i%Y2'(CL *
* | | | 1 { | *
KRREKRKKKRKEKREKKKEKEKAKAKERKEKRBREREKKEKEE

MATTR is a two bit subfield that specifies the following module

attributes:

MATTR MODULE ATTRIBUTE
™ Non=main module with no START ADDRS

Non=-main module with START ADDRS

Main module with no START ADDRS

Main module with START ADDRS

W
N
r
F
&

L indicates whether the START ADDRS field is to be interpreted

as a logical address that requires fixing up by LINK=86/LOCATE-35

(L=1) or aS a physical address appropriate for placement into the CS

and IP reaisters of the 8485 (L=4).

Z indicates that this bit has not currently been assianed a
function. These bits are required to be zero.

8

8886 Object Module Formats version 4.9

either of the following formats: .

START ADDRS (first form)

RRR KKEREAKK ff [RRRRRRRKE ff [ERRRERKRERREREERE

* x *

END * FRAME * TARGET * TARGET

* DAT * DATUM * DATUM * ~ DIS-=
* * * * PLACEMENT
*&

*

+
F
e

+

* * x

RRREKEKKRK ff /RREKRREREK ff /RRERRERREKERERERER

| | | |
+conditional+conditional+conditional+

The starting address of a module has all the attributes of any

other logical reference found in a module. The mapping of a logical

startina address to a physical starting address is done in exactly

the same manner aS mapping any other logical address to a physical

address as specified in the discussion of fixups and the FIXUPP

record. The above subfields of the START ADDRS field have the same

semantics as the FIX DAT, FRAME DATUM, TARGET DATUM, and TARGET

DISPLACEMENT fields in the FIXUPP record. Only “primary” fixups are

allowed. Frame method F4 is not allowed.

START ADDRS (second form)

When the logical address is mapped, by LOCATE-86, to a physical

address, the START ADDRES field takes on the following format:

KREKKKKKKKKKKKREKRKEKEKKEKREKRE

* *

FRAME * OFFSET *
NUMBER * *

* *

* *

*

*

*

*

*

*

KRREKKKKREKKEEKREKREKKKEKEKKEK

FRAME NUMBER specifies a frame number relative to which the

module will begin execution. This value is appropriate for

insertion into the CS register for program initiation.

OFFSET specifies an offset relative to the FRAME NUMBER which

defines the exact location of the first byte at which to \Seqin

execution. This value is appropriate for insertion into the IP

register for program initiation.

81

8886 Object Module Formats Version 4.9

LIBRARY HEADER RECORD
(LIBHED)

RRERKRKKEKEKKHEKEKRKEEREKEKEKKKEKRKRRKRKEKEKRRKKKEAKRKKRKRKEKKEKKRKRKKERAEKRKEEEK

® * * bg & * &

* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* TYP * LENGTH * COUNT * NUMBER * NUMBER * SUM *
* AAH *® * * * * *
* * *& * * * ¥

KRHRREREKEKREEKRKEEEEEKRKEKRAKHEERREREREKRRERRRERRRERREEKRREKRREERERER

This record is the first record in a library file. It
immediately precedes the modules (if any) in the library. Following
the modules are three more records in the following order: LIBRARY

MODULE NAMES RECORD, LIBRARY MODULE LOCATIONS RECORD, and LIBRARY

DICTIONARY RECORD.

MODULE. COUNT

This field indicates how many modules are in the library. It
may have any value, including zero.

BLOCK NUMBER,. BYTE NUMBER

indicate the relative location of the first byte These fields

the of the LIBRARY MODULE NAMES RECORD in the library file, using

ISIS-II file format.

82

8886 Object Module Formats

LIBRARY. MODULE. NAMES. RECORD
(LIBNAM)

ReEKKKAKKKKKARKKAEKHRKEKER | / /KRKEKKKKKEKE

* * *& * *

* REC * RECORD * MODULE * CHK *
* TYP * LENGTH * NAME * SUM *
* AGH * * * *
* * * * ®

RKKKKKKKKKKAKREKKEKKKEE | / /KEKKKKKKKKK

+-repeated--+

Version 4.9

This record gives the names of all the modules in the library.

The names are given in the same sequence as the modules

the library.

MODULE; NAME

appear in

The i'th MODULE NAME field in the record contains the module

name of the i'th module in the library.

83

8986 Object Module Formats Version 4.9

LIBRARY MODULE LOCATIONS RECORD
(LIBLOC)

RH KEKKK HK KEKE KRKE KEKE REE EK ERE KERR REEEKEREKRREKEEREE

* * * * *

* REC * RECORD * BLOCK * ~ BYTE * CHK

+
+

bt
t

ASH * * * *
* * x *

HHH KKKKKKKEKEREKKKEKEKKHEEKEKEREEKEKEREKREKEKEKRKEEE

This record provides the relative location, within the library

file, of the first byte of the first record (either a THEADR or
LHEADR or RHEADR record) of each module in the library.

The order of the block-number/byte-number pairs corresponds’ to
the order of the modules within the library.

BLOCK. NUMBER, BYTE NUMBER

The i'th pair of fields provides the relative location within
the library file of the first byte of the first record of the i'‘th
module within the library, using the ISIS-II file format.

84

8886 Object Module Formats

(LIBDIC)

KEKE KERR f/f /REREREKKEKEKREKERER

* & * *

* REC * RECORD * PUBLIC #*
* TYP * LENGTH * NAME * OOH
*&

*

*

AAH * * *

x * *

*

*

*

*&

CHK
SUM

*
x
x

KKKKHEKKHEKKKKKEKRKERERRKK | f /RRKEKREKKKEKRERKEEE

| |
+-repeated=—-+

+----repeated-----

This record gives all the names of public

library. Since a name must have a non-zero

in the format are distinguishable from the

Thus, the ‘'9@' bytes separate the PUBLIC

names in the i'th group are defined in the

library.

symbols
length,

PUBLIC

NAMES into qroups;

i‘th

Version 4.9

within

the ‘96!

NAME

module of

the

bytes

fields.

all

the

oO

m

8486 Object Module Formats Version 4.9

COMMENT RECORD

(COMENT)

RAKKAKAKKKKKAKKAKKKKKKKKKKKKKEKKKREE | / /KRKREKKKKEKE

*& * * we * *

* REC * RECORD * COMMENT # * CHK *
* TYP * LENGTH * TYPE * COMMENT * SUM *
* 88H * * * ® *
* ® we * * *

REKKKEKKKKEKKAKKKKKARKEKKEKKKKRERKKERER / f/f /REKKKKKEKRE

This record allows translators to include commentary
information in object text.

COMMENT TYPE

This field indicates the type of comment carried by this
record. This allows commentary information to be structured for
those processes that wish to selectively act on comments. The
format of this field is as follows:

RRR KRKRERRKEKKKEKKRKRRKERKERKREKKEEREKREKRKERERERKRKEKKEKERREKKEKEREKEKEKEEEEE

x N | N 4 | | | | | * COMMENT *
x Ppj|o]Zztzai)ya2zatst2z2ita2atitazs CLASS *
KKK KKKKKARKARKKREKARKKKKKRRAKKRKK KR RRR RKKEKKREKRKRERKRREEKE

The NP (NOPURGE) bit. if 1, indicates that the COMENT record is
not purqable by object file utility proqrams which implement’ the
capability of deleting COMENT record.

The NL (NOLIST) bit, if 1, indicates that the text in the

COMMENT field is not to be listed in the listing file of object file
utility programs which implement the capabiltiy of listing object
COMENT records.

The COMMENT CLASS field is defined as follows:

6 Language translator comment

1 Intel covyright comment. The NP bit must he
set.

2-155 Reserved for Intel use.

156-255 Reserved for users. Intel products will
apply no semantics to these values.

8886 Object Module Formats Version 4.9

COMMENT

This field provides the commentary information.

27

8886 Object Module Formats

8e

APPENDIX 1

NUMERIC LIST OF RECORD TYPES

6E
790
72
74
76
78
7A
7C¢
TE
88
82
84

88
BA
8C
8E
99
92
94
95
98
9A
9c
9E
Ag
A2
A4
A6
A8
AA

RHEADR

REGINT

REDATA

RIDATA

OVLDEF

ENDREC

BLKDEF

BLKEND

DEBSYM

THEADR

LHEADR

PEDATA

PIDATA

COMENT

MODEND

EXTDEF

TYPDEF

PUBDEF.
LOCSY™

LINNUM

LNAMES

SEGDEF

GRPDEF

FIXUPP

(none)

LEDATA

LIDATA

LIBHED

LIBNAM

LIBLOC

LIBDIC

Version 4.9

8086 Object Module Formats Version 4.9

APPENDIX 2

TYPE REPRESENTATIONS

The leaves in the following diagrams may be Numeric Leaves

without relations, Strina Leaves, Index Leaves or Null Leayes.

Andleaves and Orleaves are not supported at this time.

Types may be defined by branches of the following forms:

| |
+ +

| SCALAR | (length) | (scalar type) |

+ +—----= es os

| |

ees cee oe aw ow ee aw a a ee oe eae ee oe ee ee oe ee

foe enna tana et = t= +

| LIsT | 2? | ? | ? | eee | ? |
few ew nnn ae pn mttaer amt

| | | | | |

89

8886 Object Module Formats

where "(scalar type)" can be either

INTEGER, or REAL, “(return)" can be either

Version 4.9

oe ee ee ew ee ea ee ee =

UNSIGNED INTEGER, SIGNED
SHORT or LONG (which

indicates, in the case of a LABEL, whether a jump to the l.bel
should be a “short" jump or a “long" jump,
following values are assianed:

112
113

. 114
99 INTERRUPT 115

160 FILE 116
161 PACKED 117
192 UNPACKED 118

163 SET 119
1@4 (reserved for lenath) 129
195 CHAMELEON 121
106 BOOLEAN 122

107 TRUE 123

108 FALSE — 124
189 CHAR 125
110 INTEGER 126
111 CONST 127

respectively), and _ the

(reserved for lenath)

LABEL

LONG

SHORT

PROCEDURE

PARAMETER

DIMENSION

ARRAY

{reserved for lenath)

STRUCTURE

POINTER
SCALAR

UNSIGNED INTEGER

SIGNED INTEGER

REAL

LIST

(Note) 1. The above (decimal) values are chosen

for the convenience of utility
EDOJ86, and OJED845. All numbers

programs such as

are different
(although conceptually there is no reason why REAL
and SCALAR, for example, can‘t be the same number),

and are rather large, so that object module display
programs may correctly decide whether to represent a

Numeric Leaf as a number or as an identifier, make
this choice correctly most of the
give a wrong identifier.

time, and never

2. For more detailed type descriptions’ see the
translator EPS's (e.g. ASM=-86,

FORTRAN=85) . (end of Note)

99

PLM-84, PASCAL-36,

object _

8986

file

+

module

Object Module Formats

+ |

APPENDIX 3

SYNTAX DIAGRAMS

Version 4.0

-->(LIBHED) eeternr rrr rn rer +-—->(LIBNAM)-->(LIBLOC)-=->(LIBDIC)-=>

91

8886 Object Module Formats Version 4.90

tmod

-<------- t—— --------- + por ernment
-->(THEADR)->| sgr table |<-t+t------ werner tan ten renner ---+->| modtail |-=->

-<------ wo 22 == ----- + * fewer nnn == + | ten ennn--—+
+-!| component |<=-+

+—_------- a-—+

-->(LHEADR)->| sar table | -+----------- ton $em enn nnn ~---+=->| modtail |-=>
~--2---- fee ee enn wn mn 7 pew nw nmnwnt | pe me wn nnn nnn tt | tem nnn ne +

+-| data |<=+ +=|t component] <-+

os fare ene + fee wenn mt
-->(RHEADR)->| sgr table |-t----------- ton ton en nnn ------ +->| modtail |-->

222 ~e fon 25 - === == + 7 $ae—--= + | fo-- -------- + | teeenn---- +
+-| data |<=+

>

awe owe pm om meme eee amt pow wee e ene}

-->(RHEADR)->| sgor table |------------- tener n nr een ee +->| o _modtail |-->
~ eee $oe oem ee == + tee meen ene + | teeernnn---- +

92

8885 Object Module Formats

sqgr table

was oe ew ew ae re

+-=-(GRPDEF

o-t--------------- +-->(MODEND)==->

o modtail

Version 4.6

|
) <-=+

--4--------------- poe poe e---------- == +=-->(MODEND)-->
a“

~ nae en ae nn ee

+—--(OVLDEF)<--+ +=-->(REGINT)--+

93

8986 Object Module Formats

o component

powe wont}

+--| data |<--+ +--[| t component |<--+
fee een en—t foe nn en ene = +

t component

-->(THEADR) --+-------- ane +-->

>

94

~->(ENDREC)=-=>
a aw oe ew a

Version 4.0

S6

6°y UOTSIeA

J 0 were enna |
| tececzennann-+ |
+<---| Jap peaayy |<--+

| tenner ene ena——= + |

sqzewlog atTnpow 4oelqo 94gB8E

8486 Object Module Formats Version 4.9

content def
4 d t ' Q 4 i t » > t (. ' ' 4 4 4 4

+-->(REDATA)-->+

--->(FIXUPP)-=> Note: Must contain thread fields only.

9A

84985 Object Module Formats Version 4.6

APPENDIX 4

EXAMPLES OF FIXKUPS

This appendix was originally written in November 1977, and

supplemented a paper, now obsolete, called "Overview of Proposed 8885

Fixups"™. It is included here because it provides copious examples of

fixups in pictorial representation, and therefore is an aid to

understanding the 8086 fixup mechanisms.

In the following examples, we assume that LINK is the name of a

linker and LOCATE is the name of a locater for the 8885 R&L system.

Examples of Self-relative fixups aopear in PART 1 of this appendix;

examples of Segment-relative fixups appear in PART 2.

KEY TO SAMPLE FIXUP DIAGRAMS

The diagrams are coded as follows:

PPP ... indicates the boundary of a PSEG

LLL ... indicates the boundary of an LSEG

MMM ... indicates real memory boundaries

97

8986 Object Module Formats Version 4.9

PART 1. SELF=-RELATIVE REFERENCES

PPPPPPPPPPPPPPPPPPPPPP <= PSEG => PPPPPPPPPP|PPPPPPPPPPP
P P]
P <= Pp Pe = = = = ua

'U

<= PP =o = = = m= wm = = = =

<= PT
| TARGE j
fom mw we owe +

c
u

v
U
N

TUT

U
V
I
G
V
T
U
D

V
U

U
D

U
D

v
=
u
U
V
V
U
V
U
V
U

V
V

V
U

V
V

V
U

V
V

V
V

V
D

V
O
U

U
U

O
O

P P

P P

P P

P P

P P

P P

P P

p P

P Pp

P P

P P

P Pp

Pp P

P P

Pp P

Pp P

P P

P Pp

P P

P P

P P

P P

P P

P P

p P
P P

P P

P P

P P

P P

p P CUVUV
—UV

V
G

V
V

U
U

O
U

U
D

PPPPPPPPPPPPPPPPPPPP PPPPPPPPP|PPPPPPPPPP

i
i
|
|
|

PP = point defining PSEG, usually an LSEG
PT = point defining the TARGET

If the positions of LOCATION and TARGET were exchanged in the
diagrams, then the arrows would voint down instead of up. Note: The

distance between the top of the PSEG and point PP is less thon 15 bytes,
and is commonly Zero.

98

8986 Object Module Formats Version 4.9

1.1 Self-Relative Intrasegment References

LLLLLLLLLLLLLLLLLLLELLELLLLLELLLLL

ee --+
| TARGET |

L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L fawn er ee rr rn rrr nr + L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L LLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Self-Relative references within a sinale LSEG do not require a
fixup, the translator puts the appropriate value into LOCATION.

84886 Object Module Formats Version 4.4

1.2 Self-Relative Interseqment References

Example: Self-relative jump or call to another segment.

A LLLLLLLLLLLLLL <= PP B LLLLLLLLULLLLL
L L L L r

L r
L :
L

1 weece---=>| TARGET | L :
L c
L C
L c

r
e
e

co

om

+ 4 t) 4 § q 4 +

LLLLLLLLLLLL LLLLLLLULULLL

Both LSEG's are created in the same translation.

LOCATION: OFFSET or LOBYTE

PSEG: SI(A) (this is the most common choice)

TARGETS: SI(B) ,dl

or SI(B) (see diagram and discussion following LOCATE OPERATIC

LINK. OPERATION:

If LSEG 8 combines then the LINKER will modify all fixups of the

above form by chanqing SI(B),dl to SI(B) ,dl+d2

B! ecocccccccebce

° ° | B eseaceeevene0eannd

° 2 a2 o °
eeceeceeeoeaee eee eo Vv ° °

eoe2ee0ee2e280280 0086

B LLLLLLLLLLLLLL ~* L

L dl <= PT

L

L L L

L L L L

L L L L

L L L L

L L L L

L L L L

L L L L

LLLLLLLELEULLLL LLELLLLELELLULt

166

8086 Object Module Formats Version 4.8

LOCATE OPERATION:

At LOCATE time these various sample possibilities can be detected:

1. PPPPPPPPPPPPPPPPPP 2. PPPPPPPPPPPPPPPPPP 3. PPPPPPPPPPPPPPPPPP

P

LLLLLLLLLLLLLL P <=

LA L
LLLLLLLLLLLLLL <= PP

LA
LLLLLLLLLLLLEL <= PP

LA L

L |
LLLLLL| LLLLLL

|
|
{
|
|

L |
LLLLLU| LLLLLL

|
|
|

LLLLLL| LLLLLLL
LB V L

L

L

L +2-222--<--- + L

L

L

L

L

L

L +-2e-e3rrr= + L

L | L
L

P p

P P

P P

P LP

P LP

PL +-------- + LP

P L P

P LLLLLL]LLLLLLL P

P | P
P LLLLLL]|LLLLLUL P

P P

P p

P P

P P

P P

P P

P P

LB V
<= PT

v
I
V
G
U
V
V
V

V
U

U
Y

|
LLLLLL|LLLLLLL P
LB | LP

PL LPP PL V LPP

LLLLLLLLULLLULL L teerrrro-- +L <=

L

L

L | TARGET | L
L <= PT

L

u
v
u
5
u
v

U0

V
U
V
V
V
I
G
T
V
V
U
D
V
V

V
V

LLLLLLLLLLLLELL

PPPPPPPPPPPPPPPP c
u

V
I
V
V
M

UV
V
V
V
V
U

D
D

U
U

v
u

Vv
V
U
V
U
V
V
V
V
V
V
U
V
U

ST
V
V

OU

5. PPPPPPPPPPP! PPPPPP LLLLLLLLLLLLLL
{

LLULLLLLUL! LLLL
LB vo
a M--+ L

L | TARGET | L

4, LLLLLLLLLELLELLoL <= PP

LB
<= PT <= PT

L

L

L | TARGET | L

L

L

L

P
P
P
Pp
P
P
P

LLLLLL{ LLLLLL LLLLLLILLLLLLL P

| | P

PPPPPPPP|PPPPPPPPP | P

Pp LLLLLL[LLLLULL P
P
P
P
Pp
P
P
Pp
Pp

P LA | L

LLLLLEL{|LLLLLLL

LA | L
<= PP

L !

LLLLLLLLLI LLL
q

PPPPPPPPPPVPPPPP

L L

L L L

L te2s-2e3-" + L L

L L L

L L L LULLLLELLEULL

v
u
U
U
B
V
V
V
V
V
V

V
V

U
V
I
U
V
U

U
U

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P PPPPPPPPPPPPPPPP

141

8986 Object Module Formats Version 4.9

Diagrams 1 and 2 show valid fixups. In diagram 3, the TARGET is not

in the defined PSEG. A warning will be given by LOCATE. In diagram 4,
if the choice for PSEG is changed from SI(A) to SI(B) then the fixup can

be made, as in diagram 5; if the displacement is greater than 32K a
“clever” fixup, shown in diagram 5 as an exclamatory arrow, will be
generated.

R & L attempts to inform the user of any erroneous’ self-relative
references. The symbol being referenced must be within the defined PSEG
independent of the bias value to be applied:

EXAMPLES: JMP SYM + 19 or JMP SYM = 2

The symbol SYM will have an offset within its containing LSEG. The
values 16 and -2 are biases. If the offset of SYM is added to the bias
in LOCATION and the result overflows, it is not known whether this is due
to the offset of SYM being greater than 64K or whether the bias (perhaps
a negative or positive number) caused the overflow. If the bias caused
the overflow then the reference is good according to R & L, if not, then

SYM is not in the defined PSEG and the reference is invalid.

The solution to this problem is to maintain the offset of SYm
independent of the bias. If the TARGET is specified in a primary way
(e.g., “TARGET: SI(B),d", then the offset will be maintained in the
fixup record itself and will be added to LOCATION only at LOCATE time.
If the TARGET is specified in a secondary way (e.q., "TARGET: SI(B)"),
then the offset must be maintained in LOCATION itself, and R & L can do

less checking on the correctness of the fixup.

If the LOCATION is an OFFSET (i.e., a full word, not just a byte)
and the bias is known to be zero, then a fixup target of: TARGET: SI(B)

could be used instead of TARGET: SI(B),dl, without sacrificing any
correctness checking.

192

8886 Object Module Formats Version 4.90

1.3 Self-Relative Reference To An EXTERNAL Symbol

A LLLLLLLLLLLLLL <= PP P cecesccccscces
L L . .
L +-------- +L a eccccccese » 8 S= PT
L | LOC 9 |------=--=-= a--------- >. SYM ..
L te-----=- +L eae eccceese
L L . .
LLLLLLLLLLLLLL soc ccceesceces

FIXUP. REPRESENTATION:

LOCATION: OFFSET or LOBYTE

PSEG: SI(A) (chis is the most common choice)

TARGET: EI(SYM) ,G

or EL(SYM) iff the offset is to be maintained in LOCATION

Or if the reference is to the i'th element of an external array:

LOCATION: OFFSET or LOBYTE

PSEG: SI(A) this is the most common choice

TARGET: EIL(SYM),i-l

LINK OPERATION:

There are three ways in which an external self-relative reference

may be resolved.

CASE 1: The EXTERNAL symbol (SYM) is found (by LINK) to be in the same

LSEG as the LOCATION.

CASE 2: The EXTERNAL symbol (SYM) is found (by LINK) to be in a

different LSEG, B.

CASE 3: The EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

103

80986 Object Module Formats Version 4.86

CASE 1: EXTERNAL symbol (SYM) is found (by LINK) to be in the same LSEG
as the reference. The following four cases exist.

Assume that PSEG is svecified as “PSEG: LOCATION”.

-PPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPP

LLLLLULLLLULLL LLELLLLLLEULLLULL

<= PP <= PT

<= PT <= PP

r
e
e
r
o
r
r
e
r

r
e
r
e

r
e
e
r

r
r
r

Pr
r
e
r
r
n

r
e
r
e
r
r
e
r
e
r
e
r
e
r
e
e

r
e
r
r
r
e
r

r
e
e
r

e
e

LLLLLLLLLLELLL

PPPPPPPPPPPPPPPP

LLLLLLLLLLLLLL

P

P

P

P

P

Pp

P

P

P

P

P

P

P

P

P

P

PPPPPPPPPPPPPPPP P

P P P

P Pp P

P P Pp

P P P

P P P

P P P

P P p

P P P

P P P

P P P

P P P

P P P

p P P

P P P

P P P

P P P

P P p

PPPPPPPP” PPPPPPPPP PPPPPPPP!PPPPPPPPP
1 t

LLULLLL! LELLLLL LULLUL!LELLeELe

<= PP <= PT

<= PT <- PP

e
r
r
e
r
r
r
e
r
r
r
r

r
e
e

e
r
r
r
r
r
r
r
r

r
e
r
e

°

LLLLLL!ILLLLELL

PPPPPPPVPPPPPPPPP

r
r
e
r
r
e
r
r
e
r
e
r

er
r
e
e

r
e
r
r
e
r
r

e
r
r
r

e
r
r

e
e
e

c
U
T
D
V
U
V
U
V
V

V
U

T
V

U
U

U
U

U
U

LLELLLL!ICLLELLL

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

PPPPPPP!PPPPPPPPP

P Pp

P P

P P

P P

P P

P P

P Pp

P P

P P

P P

P P

P P

P P

P P

P P

P P

P P

Depending on the absolute lenath of the arrow, LINK can perform a

“normal” fixup or a “clever” fixun (exclamatory arrow). Note that even
if the LSEG continues to grow in future LINKinag, the fixup is OK as long

as the LSEG remains less than 64K in lenath, which is enforced by LINK.
Thus the fixup is completely resolved by LINK.

144

8886 Object Module Formats Version 4.9

CASE 2: EXTERNAL symbol (SYM) is found to be in a different LSEG, 8B.

The following diagram then applies and LINK converts the fixup tos:

LOCATION: (no change)

PSEG: (no change)

TARGET: SI(B),dl

or SI(B)

LLLLLLLLLLLLLL

c
r
e
e
 L L

L L

L L

L L

L | Loc | [eecaeceetententeetnsietentantentateatameteieennte >. SYM .L

L L

L L

L L

L L

where dl is applied to LOCATION depending on

original TARGET specification.

LINK will specify the new TARGET in a primary

(secondary) way if the old TARGET was

specified in a primary (secondary) way.

B LLLLLLLLLLLLLL *

L

L

L
L cecccccccs

L eeeooeoeveveees

LLLLLLLLLLULLL

Note that this fixup is now exactly the same as the fixup specified

in (1.2).

165

8886 Object Module Formats

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

LINK will change the fixup to the following:

LOCATION: same

PSEG: same

TARGET: p#(SYM) ,d (SYM)

Version

where p# and d are from a PUBLIC DECLARATIONS record
or p#(SYM), and d(SYM) is applied to LOCATION.

LOCATE OPERATION:
ae ep ee ate erent aeee

At LOCATE time, LOCATE knows the following:

a) the memory address of LOCATION
b) the memory address of the PSEG

c) the memory address of the PUBLIC

, If either the LOCATION or TARGET is not in the

report a warning: YOU CAN'T GET THERE FROM HERE.
relative fixup can be completed as shown in (1.2).

PSEG, LOCATE can

Otherwise, a self-

8886 Object Module Formats Version 4.98

1.4 (8089) Self-Relative Reference To An EXTERNAL Symbol

A LLLLLLLLLLLLLL <= PP 2 eoccccccrccccs

L ° e

tee 2re—--— + L : e@ eeeee0e20ee28020@ @

| LOC) |-------------------- >. SYM ..
L

L

L +e------ -+ L eo eeececectece oc

L

L

a

<= PT

L . °

LLLLLLLLLLLLL eececeeee eae eee @

FIXUP REPRESENTATION:

LOCATION: OFFSET

PSEG: SI(A) (this is the most common choice)

TARGET: EI (SYM) ,d :

or EI(SYM) if the offset is in LOCATION

There are two ways in which an 8#89 self-relative reference to an
external symbol may be resolved.

CASE 1: The EXTERNAL symbol (SYM) is found (by LINK) to be in a

different LSEG, B.

CASE 2: The EXTERNAL symbol (SYM) is found (by-LINK) to be absolute.

107

898

CASE ls:
LSEG, B.

§ Object Module

EXTERNAL symbol

LINK OPERATION:

LINK will change the above fixup to the followina:

LOCATE OP

LOCATION:
PSEG:
TARGET:

Formats

(SYM) is found (by LINK) to be

(no chande)

(no change)

SI(B),dl
where dl is equal to the sum of d (if any)
and the symbol offset.

LLLLLLLLLLLLLL
, L

LLLLLLLELLLLL

ERATION:

r
e
o
e

B LLLLLLLLELLLLLL

L
L
L

L +

L | Loc | ------------------- >.

L +
L
L
L

L L
L L
L L
L ccc cceccee L

TARGET... L
L
L
L
L

e@eeeeee ese e@

r
o
o
t

LLLLLLLLLULL

in a

At LOCATE time various possibilities can be detected:

1698

1. LLLLLLLLLLLLLL

L |
LLLLLL[LLLLULLL

-
“LE

L
L

L

LLLLLL[| LLLLULLL
LB Vv

LLLLLLLLLLLLL

L
L
L
L
L
L

<- PP

<- PT

26 LLLLLLLLLLLULL
LB L

*LLLULU{ LLLULLL

|
|

LLLLLL| LLLLLLL
LA | L

+ L
Loc I ob

+ L
L
L LLLLLLLLLLLLL

<- PT

<= PP

Version 4.4

different

8886 Object Module Formats Version 4.0

Diagrams 1 and 2 show two commom cases.

R&L attempts to inform the user of any erroneous self-relative

references (TARGET not within 32K from LOC). The symbol being referenced

must be within the defined LSEG independent of the value at LOCATION to

be applied:

EXAMPLES: JMP SYM + 19 or JMP SYM = 2

The symbol SYM will have an offset within its containing LSEG. The

values 18 and -2 are siqned numbers. The fixup output by an 8989

translator may be

LOCATION: OFFSET

FRAME: F6

TARGET: EXTERNAL(SYM) , DISPLACEMENT = number

The output of LINK will be:

LOCATION: OFFSET
FRAME: FS
TARGET: SEGMENT(B), DISPLACEMENT = number + offset

where ‘number + offset' is the sum of the sianed ‘number’ and the non-

negative ‘offset‘ of the symbol From the base of the seqment B. Warning

will be issued if overflow or underflow occurs during the computation of

this displacement.

LOCATE will compute the 20-bit address of TARGET and the 29-bit address

of LOCATION, then the siqned displacement from the LOCATION to TARGET. A

warning will be issued if the displacement is not within 32K. Otherwise,

the signed displacement is added to the value in LOCATION and no checking

will be performed for this last addition.

199

8686 Object Module Formats Version 4.9

CASE 2: EXTERNAL symbol (SY™M) is found (by LINK) to be absolute.

LINK. OPERATION

LINK will change the fixup to the following:

LOCATION: {no change)

PSEG: (no change)

TARGET: p#(SYM) ,o(SYM) + d
where p# and o are from a PUBLIC DECLARATIONS
record and the sum is performed as in Case l.

LOCATE OPERATION:

At LOCATE time, LOCATE knows the followina:

a) the memory address of LOCATION

b) the memory address of the PSEG
c) the memory address of the PUBLIC

Computation and checking may be performed as in Case l.

116

8885 Object Module Formats

PART 2. SEGMENT RELATIVE REFERENCES

MMMMMMMM | MMMMMMMMMMMMMMMMMMMMMMMMMM

-FBVAL

S
S
B

B
E
R

E

M Vv

M PPPPPPPPPPP| PPPPPPP

|
|

LLLLLLLL] LLLLL

|
FOVAL- |

L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L

P

Pp

P

P

P

P

P

P

P

p

P

P

P

P

P

P LLLLLLLLLLLL

P

P PPPPPPPPPPPPPPPPPP

P
P

Pp

P

Pp

P

Pp

P

p

P

Pp

P

P

P

P

P

P

P

P

S
B
S
S
B
B
E
B
Z
B
E

@8G0GH

Version 4.6

<= canonic PSEG of L

<- PP

<-> PT

M

M

iM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

R & L enforces: FBVAL modulo 16 = 9

FOVAL less than 464K

PP = point defining the PSEG which also defines FBVAL

FFFFFH

PT -— point definina the TARGET which also defines FOVAL (qiven PP)

111

8986 Object Module Formats Version 4.4

2.1 Seqment-Relative Pointer Reference (long call) With No Grouping and

Both LSEG's Created In Same Translation

A LLLLLLLLLLLLLL B LLLLLLLLLLLLLL “ ¢=] pp

L L L L
L L
L L

L L

L | Loc | --- nn rrr >| TARGET | L

L +te-<----- + L

L L

L L

L L r
e
o
.

c
o
e

LLLLLULLLLLLL LLLLLLLLLLLL

FIXUP. REPRESENTATION:

LOCATION: POINTER

PSEG: TARGET (this is the most common choice)

TARGET: SI(B) ,dl

or SI(B) where dl is put in LOCATION by translator

LINK. OPERATION:

If LSEG B is combined, then the LINKER will modify all fixups of the

above form that reference SI(B) by changing SI(B),dl to SI(B),dl+d2 or by

applying d2 to the LOCATION.

B eaeeeoeeceex#8#eeo#eee#es *

e e | B eoxvseveevee eos es eon <- Pp

° e d2 ° °

e e | e °

exseeeneee2eeee20 Vv ° °

e@eoeceeoeeve ee ee © @

B LLLLLLLLLLLLLL ~*~
<=- PT

+ t t { i ' { t 4 +

c
r
o
e
o
r
o
r
o
r
e
t
e
 L

L L
L L
L L
L L
L L
L L
L L
L L LLLLLLULLLLLLL

112

8486 Object Module Formats Version 4.90

LOCATE OPERATION:

At LOCATE times:

1. The BASE (FBVAL) is determined by the PSEG directive as the

canonic PSEG defined by PP.

2. The offset is a positive value, less than or equal to 54K, from

the determined PSEG. LOCATE includes as part of the offset, FOVAL,

the difference between the absolute location of the LSEG and the

absolute location of the PSEG defined by the LSEG. (This difference

will be less than 16.)

113

2.2

8986 Object Module Formats version 4.9

Segment~Relative Pointer Reference (long call) With No Grouping

Where Reference is to an EXTERNAL Symbol

A LLLLLLLLLLLLLL 2 ccccccccccecee <= PP
L L . .

$e------- +L er
| LOC 9 |-------------------- >. SYM ..

L

L
L +222 2---—- + L e eecccccece eo
L .

LLLLLLULLLULLU wer c ace ccc scene

FIXUP REPRESENTATION:

LOCATION: POINTER

PSEG: TARGET (this is the most common choice)

TARGET: EI(SYM)

LINK OPERATION:
a ee ee ee

There are three ways in which an EXTERNAL seqment-relative reference

“may be resolved:

CASE lz: EXTERNAL symbol (SYM) is found (by LINK) to be in’ the same

LSEG as the reference.

CASE 2: EXTERNAL symbol (SYM) is found (by LINK) to be ina

different LSEG, B.

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

114

8886 Object Module Formats Version 4.6

CASE 1: EXTERNAL symbol (SYM) is found (by LINK) to be in the same

LSEG as the reference. An example would be a reference to data (ROM

DATA) stored in CODE segment A.

The PSEG is then determined by LINK to be SI(A) as the default,

since no grouping is specified. The following two cases may be

found:

PPP PPPPPPPPPPPPPPPPPPPPPP P PPPPPPPPPPPPPPPPPPPPPPPP

a LLLLLLLLLLLLLLLLL
2=A

LLLLLLLLLLLULLULLL “<= PP =>

LA

L PT => V
° SYM.
eeeeenee eee

LLULLLELLLLLLULLL
?=A

c
r
e
e
r

r
e
r
e

<= PT

LA eeeeee eee @

ia

L L

L L
L L L

L L L

L L L
L L L

L L L

L L L
L L L
L L L
L coccccceee§ L L
L ° SYM . L L
L L L
L L L
L L L
L L L
L L L
L L L
L L L
L L L
L L L

L
L
L
L | Loc |
L
L
L LLULLLLLLELLULLUt

Pp

P

P

P

P

P

P

P

P

P
P

_P

Pp

P

P

P

Pp

Pp

P

P

P

P

LLLLLLLLLLLLLLL p

P

P

P v
u
U
V
U
U
T
U
U
V
V
V
U
V

V
U

V
V
M
V
V
V
U
V
U
V
V
V
V

V
U

P

P

P

P

P

P

P

P

P

Pp

P

P

P
Pp LLLLLLULLLLLLLLLL

P

P

P

P

P

P

P

p

P

Pp

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P

P

P

P

P

Pp

P

P

P

P

P

P

P
Pp PPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPP

LINK will modify the fixup as follows:

LOCATION: same

PSEG: SI(A)

TARGET: SI(A) ,d3
or SI(A) where d3 is applied to the OFFSET part of the-L

115

8086 Object Module Formats Version 4.04

CASE 23 EXTERNAL symbol (SYM) is found (by LINK) to be in a

different LSEG, B. This case becomes the same fixup described ir

(2.1).

CASE 33 EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

The PUBLIC declaration record for SYM will define an absolute

address of the form PSEG, OFFSET. LINK changes the fixup to:

LOCATION: Same

PSEG: p#(SYM)
TARGET: p# (SYM) ,d (SYM)

or p#(SYM) (where d(SYM) is applied to the LOCATION)

Note that this fixup is completely resolved by LINK.

LOCATE OPERATION: (CASES 1 and 2)
At LOCATE time, the absolute location of PSEG is determined. If the

PSEG and its defining LSEG are at different: locations, then the

difference, x, (which is less than 15), is calculated. If the TARGET

specification was primary (e.a., “TARGET: SI(A) ,d3"), then LOCATE

can calculate the sum "d3 + x" ensuring “d3 + x < 54K". If the

TARGET specification was secondary (e.g-, “TARGET: SI(A)"), then x

is applied to LOCATION, and this assurance is sacrificed.

116

8985 Object Module Formats Version 4.0

2.3 Seament-Relative Pointer Reference (long call) With Grouping

This fixup is much the same as the fixups described in (2.1) and

(2.2). ‘The only difference is that the PSEG is always specified to

be a group base. The fixup would appear as one of the following

(also see diagram below):

LOCATION: POINTER

PSEG: GI(G)
TARGET: SI(D) ,dl

or SI(D) where dl is applied to the LOCATION

OR

LOCATION: POINTER

PSEG: GI(G)

TARGET: EI(SYM) if SYM is external

or EI(SYM) ,@

PPPPPPPPPPPPPPPPPPPPPPPPP

LLLLLLLLLLLLLLLLLLL <= PP

LB L

L L

L L

L L

LLLLLLLLLLELLLLLLLL
Group G = B, C. D

LLLLLLLLLLLLELLLULLLL

LC L

L L

L L

L L

LLLLLLLLLLLULLUEULLLL
A LLULLLLLLLLLLULLLLL

L

LLLLLLLLLLUULLLLULLL

LD dl
Vo <= PT v

u

U
V
V
V
U
V
U
V
U
V

T
V

V
U

U
U

U
D

v
u
u
U
V
v
U
V
U
V
V
U
V
V
U
V
U
V
U
V
T
V
V
U
U
U
U
 YU

o
r
t
o

P P

P P

P LLLLLULLLLLLLLLLLLLU P

Pp P

L
L
L
L
L | LOC |----------------- >| TARGET |
L
L
L
L PPPPPPPPPPPPPPPPPPPPPPP

117

8986 Object Module Formats Version 4.9

2.4 Segment-Relative Offset Reference (data reference) With No Grouping
And Both LSEG's Created In The Same Translation

Diagram in (2.1) can be used.

FIXUP REPRESENTATION:

LOCATION: OFFSET

PSEG: TARGET (this is the most common choice)

TARGET: SI(B) ,dal
or SI(B) where dl is applied to the LOCATION

Note that this fixup is exactly the same as the Segqment-Relative
Pointer Reference shown in (2.1) with one exception: the LOCATION
requires no BASE fixup. This means one less fixup value to calculate
at LOCATE time. A Segment-Relative Offset Reference with grouping is
exactly the same as the Seqment-Relative Pointer Reference with
grouping shown in (2.3) with the same exception mentioned above.

NOTE: LOCATION could also be HIBYTE, if the source code were,

for example

MOV AH, HIGH (SYM)

Note that, unlike the 8088 R & L, this fixup will take into account

the final location of SYM. If SYM has the value 199H as an offset

within its LSEG which is to be LOCATE'd at 3680H relative to the

PSEG, we have the followina:

8080 R_& L:
LOCATION: 1 byte containing HIGH(SYM) = 1

LOCATE at 36808 => LOCATION 1H
+ HIGH (36898H) = 364

Note that this value is not correct!

84986 R & Les
LOCATION: 1 byte containing zero
Fixup record: 2 bytes containing 190H

LOCATE at 3586H => Fixup value: 19H
+ Base Address 3f8@H

38H is then applied to the LOCATION (HIBYTE)

118

8886 Object Module Formats Version 4.90

Segment Relative Base Reference (used _ for seqment register

initialization)

This fixuo is much the same as the Segqment-Relative Pointer

Reference described in (2.1). The only difference is that the offset

part, FOVAL, of the fixup is not required.

FIXUP REPRESENTATION:
eo ee eee Re ee ee

LOCATION: BASE
PSEG: TARGET
TARGET: SI(B)

This allows the base address (canonic PSEG) of LSEG B to be used.

OR

LOCATION: BASE
PSEG: TARGET
TARGET: EI(SYM)

This allows the base address (canonic PSEG) of LSEG containing SYM to

be used.

OR

LOCATION: BASE
PSEG: TARGET
TARGET: GI(G)

This allows the base address (canonic PSEG) of first LSEG in the

group G to be used.

119

int [

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

