INKEEYS

FORMAT

NOTES

EXAMPLE

The inkey function.

INKEY$

INKEY$ reads the keyboard and returns whatever value it finds there.
If you press a key at the moment that INKEY$ reads the keyboard, the
function returns that key’s value as a one-character string. It does
not display that character on the screen. Instead, it passes the
string to your program. When INKEY$ reads the keyboard and finds
nothing, it returns a null string (length zero).

NOTE: INKEY$ does not of itself wait for a keypress to occur. If
you want to monitor the keyboard continuously, you must put INKEY$
in a loop (see example below).

1000 LET Loop=0

1100 LET Key$=INKEY$

1200 IF Key$="" THEN Loop = Loop+1:PRINT " "; Loop; " "; ELSE PRINT
"OkK% "; Key$; " kxx ";

1300 GOTO 1100

1400 END

This example prints a sequential number on the screen each time
INKEY$ reads the keyboard. When you press a key, it prints the key
surrounded on either side by " ¥xx ".

Input/Output Statements 7=3

INFUT

The INPUT statement asks the user to enter data. It then assigns
the data to specifed variables.

INPUT [;1["promptString"] (3!, variablesList

When an INPUT statement executes, it prints the contents of the
promptString. If you follow the promptString with a semicolon, a
question mark will follow this string. For example,

1000 INPUT "Your name"; Name$
prints on the screen as
Your name?

If you put a comma at the end of the string no question mark
appears. If you do not include a promptString, the program only
displays the question mark. You must enclose the promptString in
quotation marks; it can contain any printable characters.

Program execution stops after displaying promptString and question
mark (if specified). Execution waits for you to enter data and
press CODE-RETURN. If you place a semicolon directly after the word
INPUT, the cursor will remain on the same line as the user’s
response after confirming.

Multiple variables must appear at the end of the INPUT statement.
You cannot place variables within the input string. The following
example places a variable (Count) in the input string to describe a
range of choices. This is an illegal statement.

1500 INPUT "Pick a number (from 1 to ":Count; ") "; Choice

The INPUT statement wants to put your data into Count, because Count
comes at the end of a prompt string. To put such an informational
variable in an INPUT statement, write two lines, one a PRINT
statement, the other an INPUT statement. In the example below, we
break the illegal line 1500 into two lines. The semicolon at the
end of line 1500 causes the two to print like one statement.

1500 PRINT "Pick a number from 1 to ";Count;
1600 INPUT Choice

Data entered via the keyboard is assigned to the variable(s)

7-6 GRiDBASIC Reference Manual

EXAMPLE

specified in the variableslList. The number of data items entered
must be equal to the number of variables specified in variableslList.
You must separate multiple variables in variableslList with commas.

Each data item entered must be of the same type as that specified by
the corresponding variable name. The variable names in
variablesList can be any mix of numeric and string variable names
including subscripted variables. However, each input must be of the
same kind as its variable.

NOTE: INPUT does not accept a comma or a semicolon as valid input.
You must start vour string with the double quotation mark (") if you
want to include either of these characters.

I¥ you respond with the wrong kind of constant (giving letters to a
numeric variable or including a comma or semicolon in an input
string, for example). vyou will see the message

Idvalid input: Re-enter data

1000 INFUT "Flease enter your first name", First$

1100 PRINT "Okay, "; First$;

1200 INPUT ", what is your last name": Last$

13200 INPUT; "Your area code"; Area$

1400 INPUT " And phone number"; Fhone$

1500 PRINT "We can reach you at ("; Area$; ")"; " "iPhone$%
1600 PRINT

1700 PRINT "Type three numbers...": INPUT "(FPut a comma between each
one)", A, B, C

1800 PRINT: FRINT "Those numbers are: ": A, B, C

1900 END

This example illustrates the various possibilities inherent in the
INFUT statement. In line 1000, the comma at the end of promptString
suppresses a question mark, whereas the semicolon at the end of
promptString in line 1200 prints a question mark. However, in line
1300 the semicolon following INFUT suppresses the carriage
return-line feed character at the end of the line. As a result,
lines 1300 and 1400 print on the same line. See Figure 7-Z below.

Lines 1100 and 1200 combine a variable that gives information and

one that asks for input. Finally, lines 1700 and 1800 show how to
gather multiple items of information with one INFUT statement.

Input/Output Statements 7=7

Please enter your first name John

Okay, John, what is yowr last name? Smith

Your area code? 415 And phone number? 961-4801
We can reach you at (415) 9€1-4899

Tupe three numbers. ..
(Put a comma betuesen each one) 12.8€,-3. 14,+ 00001

Those numbers are: 12.06 -2.14 @. 20001

Figure 7-2. The INPUT Statement Illustrated

7=-8 GRiDBASIC Reference Manual

LOCATE

FORMAT

NOTES

EXAMPLE

This statement positions the cursor to a specified dot or pixel
location on the screen.

LOCATE X,y

The horizontal coordinate (%) must be in the range of 1 to 320 and
the vertical coordinate must be in the range of 1 to 240. The
coordinates describe the position of the top, left pixel of the
first character in the string that follows the LOCATE statement.

When a program runs, it doesn’t normally display the cursor. When
yvou follow a LOCATE statement with an input/output statement such as
INFUT, the cursor appears at the screen location specified by the
last preceding LOCATE statement. Similarly, a subsequent FRINT
statement will output its data beginning at the previously specified
screen location.

Also see the DRAWCHARS statement in Chapter Ten. DRAWCHARS does not
position the cursor, but rather specific character strings.

1000 LOCATE 140,110

1100 INPUT "Horizontal axis (0-320)", Horiz
1200 LOCATE 140,120

1300 INPUT "Vertical axis (0-240)", Vert
1400 LOCATE Horiz, Vert

1500 PRINT "."

1600 END

This example shows the power of the LOCATE statement by positioning
its INPUT statements (lines 1000 and 1200) and then by letting you
display a dot at your own coordinates (line 1400).

Input/Output Statements 7=9

FRINT

FORMAT

NOTES

7-10 GRi

The FRINT statement displays data on the screen.

PRINT [expression][{,i;}][expression] ... [{,!;}]

The PRINT statement displays any expression that follows it and
sends a carriage return-line feed combination at the end of that
expression. When deprived of an expression, FRINT displays a blank
line, the result of the carriage return-line feed characters. The
following expressions are all legal. Line 1100 yields the product
of 5 x 6, 30.

1000 PRINT "Hello"
1100 PRINT Sxé
1200 PRINT

You must enclose string constants in quotation marks ("). You can
omit the final quotation mark from any string appearing at the end
of a program line. Only the size of the screen limits the number of
expressions a single FRINT statement can handle.

To place multiple expressions after a single PRINT statement, you
must separate the individual expressions with either a comma (,) or
a semicolon (;).

If you place a semicolon between two expressions, the two
expressions will print with no intervening characters. See
"SEMICOLON" later in this chapter.

If you place a comma between two expressions, FRINT displays the
value of the second expression at the beginning of the next "print
zone". GRiDBASIC divides each line into print zones of 15 spaces
each. Commas used as expression separators cause a "tabbing" effect
so that the next expression value is displayed in the next print
zone.

The zones begin at columns 0, 15, 30, and 45. If a string has more
than 15 characters, PRINT will skip the zone that has been
overwritten and begin the next display at the next zone. Thus the
comma never causes concatenation. See "COMMA" earlier in this
chapter.

Terminating a list of expressions with a comma or semicolon, cancels

the carriage return-line feed pair so that a subsequent PRINT
statement continues printing on the same line. If a printed line 1s

DBASIC Reference Manual

A g

W

EXAMPLE

longer than the display’s line width, printing continues on the next
line. GRiDBASIC breaks stringe at the right edge of the screen.

Frinted numbers are always followed by one space and positive
numbers are also preceded by one space. A minus sign precedes each
negative number.

1000 LET A=5: B=3: C%$="George": D#%="Washington"
1100 FRINT A

1200 PRINT B

1300 PRINT "A+B=";A+B

1400 PRINT S5+3

1500 FRINT

1600 FRINT C%

1700 FRINT D%

1800 FRINT C#$+D%

1900 PRINT

2000 PRINT TAE(0) "O0"3; TAB(10) "10"; TAB(20) "20"; TAB(Z0) "30";
TAE(40) "40"; TAB(S0) "S0"

Z100: PRINT “a", “BY, "% DY, ™MEY, "F'; “§"
2200 PRINT “a%z; “B"; "G%3 "D¥; "E"y “F'3 "B
2300 END

Lines 1100 and 1200 print the values stored at variables A and E.
Line 1300 prints a string constant and then the result of adding A
and BH.

Line 1400 shows that FRINT can operate on numeric constants by doing
math for you. Note in line 1800, a plus sign between string
constants concatenates (or joins together) strings.

Line 2000 shows how the TAB statement operates with PRINT. Line

2100 the comma’s tabbing effect and line 2200 the semicolon’s
concatenating effect.

Input/Output Statements 2= 14

FRINT USING

The PRINT USING statement formats strings or numbers, depending on
the punctuation that follows the statement.

A4

PRINT USING format symbol;{list of expressionilist of string%}

NOTES

FPRINT USING takes as its arguments a format symbol and a list either
of numeric or string expressions. The format symbol shapes the
expression into their format.
For example, the format symbol ("###.##")
II*“*. ’*ll ; A
tells GRiDBASIC to put the number stored in variable A into a format
with three digits to the left of the decimal point and two digits to
the right. Thus the number 34.14735 appears in the formatted form
34.15

This section explores each format symbol and its results.

STRING EXPRESSIONS

You can modify string expressions with any one of three format
symbol s:

@ The exclamation point (!)
@ Double back slash enclosing space(s) (\n space\)

@ The ampersand (&)

EXCLAMATION FOINT (!)

The exclamation point returns only the first character in each
string argument that follows it. See the example below.

DOUBLE BACEK SLASH (\\)

When you don’t put space(s) between the two back slash
(CODE-SHIFT-") characters, the double back slash prints two

7-12 GRiDBASIC Reference Manual

characters from its string argument(s). Each space between the back
slashes causes another character from the string(s) to print.

Double back slash prints one space character for each character you
specifv over the number of characters in the string. Thus if a
string expression has five characters, and five space characters
separate the two back slashes, two spaces will follow the printing
of the five character string. See the example below with its
companion printout.

AMFERSAND (%)

The ampersand causes the string to print exactly as it is stored.
See the example below.

EXAMPLE (STRINGS)

10G0 LET A$="Input"
1100 LET B#$="Output"

1200 PRINT USING "!":A$;ES$ 1o

1300 PRINT USING "\\";A$;E$ In0u

1400 FRINT USING "\ \";A$;H$ InpOut

1500 PRINT USING "\ \";A$;B$ Inpulutp

1500 PRINT USING "\ \"3A$;B% InputOutpu
e Input Dutput

1700 PRINT USING "\ \":A%$: BS It

1800 FRINT USING "&":A$;

1900 END

NUMERIC EXPRESSIONS
The numeric format symbols include:
@ The number or "pound" sign (#)
@ The decimal point (.) and comma (,)
e The plus (+) and minus (-) signs
® The double asterisk (¥¥)
@ The double dollar (%)
@ The double asterisk-dollar (X%X$)

a [he character string

Input/Output Statements 7-13

NUMBER SIGN (#)

COMMA (,)

Each number sign reserves one digit of space for PRINT USING. Thus
to reserve space for a five digit number followed by three decimal
places, you write

HUHBH, HE4
Such a format handles numbers like

12345.567 and -2345.987

Note that the minus sign takes one of the character positions. If
you try to print a number with more digits than your format allows,
a percent sign (%) will precede the first character (whether it’s a
sign or a number). We call this the "overflow symbol." See Figure
7-3 below. Thus trying to put the number -99999.01 in the format
##4444. ## would result in

%-99999.01

Whenever a number has fewer digits than the PRINT USING format,
PRINT USING puts these extra spaces at the front of the number.
Figure 7-3, shows a five digit format (to the left of the decimal)
and three numbers in that format. Both the five digit positive
number and the four digit negative number take up all alloted
digits. The extra two digits pad the three digit number to its
left.

HEHEH. $4
234468.91

576.08
-3418.99

Figure 7-3. How Format Characters Fad Digits

If you want your number to display a comma every three digits, you
can include the comma anywhere tc the left of the decimal point.

The comma also specifies another digit in the string. The following
examples are all legal.

HHSEHHE, L BE HE, BRRNEL HHHGHRE . B

7-14 GRiDBASIC Reference Manual

If you place a comma to the right of the decimal point, the comma
prints as a literal at the end of the number. For example:

You can pad numeric output with surrounding spaces by putting space
characters between either end of the string and the nearest
quotation mark. See Figure 7.4 below for an example.

The program below with its output illustrate these facts.
1000 LET A=.912345

1100 LET B=7
1200 LET C=-1234.567891

1300 PRINT "A = ";A
1400 PRINT "B = ";E
1500 PRINT "C = ";C

1600 PRINT

1700 PRINT USING "#####.4#%4":A, B, C
1800 PRINT USING "#####.#% ";A, B, C
1900 PRINT USING "#####,.##":A4, B, C
2000 PRINT USING “##.##";A, B, C

2100 END

A= B8.3123435

B=7

C = -1234 5678391
8.91 7.88 -1234 .57
B.91 7 .88 -1234 .57
B8.91 7.0 -1,234 .57

8.21 7 .98 %-1234 .57

Figure 7-4 Basic formatting for PRINT USING

FLUS (+) AND MINUS (-) SIGNS

GRi1DBASIC accepts a format with a plus or a minus sign at either the
front or rear of the format string. All the following are legal:

Input/0Output Statements 7-15

+H#HHE, #4
~HHH#. #H
HHH# . HH+
HHHH, #H-

Flacing the plus sign on either end of the format string causes
positive numbers to display the plus sign in the position indicated
by the format. Negative numbers print the minus sign in this same
position. Either sign adds an extra space to its number. See
Figure 7-5 below, it shows a program with formatted output.

1000 LET A=-213.14
1100 LET B=2130.14
1200 LET C=-2130.14

1300 PRINT "A = ";A
1400 PRINT "B = ";B
1500 PRINT "C = ";C

1600 PRINT

1700 PRINT USING "#####. ##" A,
1800 PRINT USING "“+####.##";A,
1900 PRINT USING "####.##+"3;A,
2000 PRINT USING "####.##-";A,
2100 PRINT USING "-####. ##"; A,

-

mmpmm
oooo0oon

-

2200 END

A= -213.14

B = 2130.14

C=-2130.14

-213.14 2130.14 -2130.14
-213.14 +2130. 14 -2130. 14
212.14- 2130 14+ 2129 14-
213.14- 213014 2130 . 14-

-213.14 2130.14 %-2120.14

Figure 7-5. The PRINT USING Format with Signs

DOUBLE ASTERISKS (x¥)

7=1&

Flacing two asterisks in front of the format string fills leading
spaces with asterisks. NOTE: Leading spaces appear when the number
of digite take less space than the number of positions specified by
the format. The program and printout in Figure 7-6 1llustrate
double asterisk, double dollar. double asterisk-dollar formatting.

GR1DBASIC Reference Manual

DOUBLE DOLLAR (%$%)

Placing two dollar signs before a format string causes a dollar sign
to print to the left of the formatted number. Double dollar creates
two format spaces, one of which the printed dollar sign takes. See
Figure 7-6 for examples.

DOUBLE ASTERISK-DOLLAR (k¥%)

EXAMPLE

Double asterisk-dollar combines the effects of double asterisk and
double dollar: It prints a dollar sign to the left of the number and
fills the field with asterisks whenever the number contains fewer
digits than the format specifies. See Figure 7-6 immediately below.

{NUMBERS)

1000 LET A=.912345

1100 LET B=7

1200 LET C=-1234.5678%91

1300 PRINT "A ":A

1400 PRINT "B “;:B

1500 FRINT "C "sC

1600 PRINT

1700 PRINT USING "$s#s###.#4"1A,
1800 FRINT USING "$S####.#%-"3A,
1900 PRINT USING "Xx$H###.H#";A,
2000 PRINT USING "xx$###.#8-"3;A, EH,
2100 PRINT USING "Xx####.#4":A4, B, C

I nwn

-

m o mm
-
oOnaon

2200 END
A = 8.912345
B=7
C = -1234 567891
$0.91 $7.00 $-1234.57
$8.91 $7 .99 $1234.57-
¥¥kx¥ks$0 . 91 X¥kkxe? . 00 *$-1234 .57
AEEEs0 91 LES &yl *$1234 57—
F¥¥kke 91 £XE%%7 .00 *-1234 .57

Figure 7-b6. Asterisk and Dollar Formatting

CHARACTER STRINGS

You can also include character strings between either set of

Input/Output Statements 7=17

guotation marks and the format string. FRemember: The space is a
character. All the following are legal:

" HHaHE. B8

"HHHHE . W ™

" HEHEH. 49 "

"Your account contains $&####H#. H#H"

"H#4#4#. #4 after deductions”

" You get #####.## shares for each hundred"

7-18 GRiDBASIC Reference Manual

SEMICOLOMN

FORMAT

NOTES

EXAMPLE

The semicolon character formats FPRINT and INFUT data.

expression: expressionl;]

The semicolon character (;) serves to link expressions following
PRINT and INPUT statements. FPlaced between expressions, the
semicolon can link variables and strings. Unlike the comma, it
provides no space between expressions. Flaced at the end of a
program line, the semicolon suppresses the carriage return-line feed
characters issued by PRINT.

When a semicolon follows an INPUT statement, it suppresses the
carriage return-line feed pair. As a result, you can request
multiple items for INFUT on the same line.

1000 INPUT "Your first name is"; Name$

1100 FRINT

1200 INPUT; "Your City"s; City$

1300 INFUT; " State"; 5t$

1400 INPUT " ZIP":;ZIP$

1500 PRINT

1600 PRINT "Ahhh, you mean "3 City$; ", "; Sté; " "; ZIP$: " and not

ll;
1700 PRINT Name$;City$;St$;ZIF$
1800 END

In lines 1000, 1200, 1300, and 1400 the semicolons following the
prompt string cause a question mark to print immediately after the
prompt. The semicolons after INPUT on lines 1200 and 1300 suppress
the carriage return-line feed pair, so that the program requests
city, state, and ZIF code information all on the same line.

Line 1600 shows how you can place semicolons to link a mix of

strings and variables. Line 1700 prints as one long line, because
semicolons provide no spacing.

Input/Output Statements =19

TAE

FORMAT

NOTES

EXAMPLE

This function operates with the PRINT statement to tab horizontally
a specified number of character positions or spaces.

TAB(expression)

TAB understands expression as the column number where it should
position whatever item follows it. For example,

1000 PRINT TAE(17) "Top Drawer"

prints the string "Top Drawer" at the 18th column of the current
line. NOTE: The first display position on a line is 0; TAB(1) is
the second character position on a line.

The expression must be a positive number. If the current print
position is already beyond that specified by expression, TAE goes to
the specified expression on the next line. If the specified value
is greater than the length of a display line (52 characters), TAE
simply keeps counting character positions on subsequent lines to
arrive at the specified column position. Thus,

PRINT TAB(52) "Here"

would print HERE beginning in the first character position of the
next display line.

TAB operates only with the PRINT statement —-- it does nbt work with
the PRINT# statement.

1000 PRINT TAE(Q) "O"3 TAB(10) "10"; TAB(20) "20"3; TAB(30) "30";
TAB(40) "40"; TAB(S0) "S50"

1100 FOR Position=0 TO 10

1200 FPRINT TAB(Position) "Tab "jPosition

1300 NEXT Position

1400 END

This program prints the word "Tab" and the tab’s number at columns 0
through 10.

7-20 GRiDBASIC Reference Manual

v

TIMES

FORMAT

NOTES

EXAMPLE

The time function.

TIMES

TIME$ returns the current time as a 13 character string from the
Compass Computer system’s real-time clock. The string takes the
form hh:mm:ss a.m. or hh:mm:ss p.m. where hh is the hour (00 through
12), mm is the minutes (00 through 59) and ss is the seconds (00
through 59). NOTE: These characters are string, not numeric,
characters. For a program to use them numerically, you must convert
them to numbers {see Chapter Six, the VAL statement).

1000 PRINT "The time is ":; TIME$

1100 FOR Loop=1 TO S

1200 FOR Rest=1 TO 128: NEXT Rest

1300 LET Second$ = MID$(TIMES$,7,2)

1400 PRINT: PRINT "The current seconds are ":; Second$
1500 NEXT Loop

1600 END

After printing the time in line 1000, the program illustrates that
you can take any particular element from the time string and work
with 1t separately. In this case, the current seconds print every
second, five times. The loop at line 1200 provides a one second
{approximately) pause between printouts.

Input/Output Statements =21

CHAPTER EIGHT: SEQUENTIAL FILES STATEMENTS

This chapter describes the statements necessary for writing, reading, and
manipulating sequential files. Many of these commands also come into play
when dealing with random access files (described in Chapter Nine).

The PRINT# and INPUT# statements, described in this chapter, transfer data to

and from sequential files. The files created by the FPRINT# statement are in a
format called "interchange file format" and the INFPUT# statement expects files
it reads to be in this same format.

The interchange file format enables GRiD applications to place data in columns
and rows for tabular or cell-based applications such as GRiDFLAN, GRiDFILE and
GRiDFLOT. Because GRiD applications can read files in interchange format,
they can process data generated by GRiDBASIC programs.

NOTE: Many of the examples in this book write or read data from a floppy drive
and a subject called "‘Testing®." For example:

1000 OFEN "0",1,"*f0"Testing Weekly"

If you prefer to put your test files on your bubble, replace "*f0" with "‘“bO."
For the hard disk, substitute "*w0." The BGRiDEASIC OPEN command can create a
title {like "‘*Weekly") but not a subject. If you want to create a special
subject for your examples and test programs, you must do this beforehand.

If you prefer not to deal with pathname syntax, put the GETFILE$ statement in
vour program. It presents the standard application file form. See the
GETFILE$ statement later in this chapter.

NOTE: You need only specify a file's device, subject, and/or kind when any of
those designations change. For example, if you set usage (CODE-U) to the

Sequential Files 8-1

floppy drive and then select the subject "*Testing" to write a BASIC program
in, you could write

1000 OPEN "0",1," “Weekly"
instead of
1000 OPEN "0",1,""f0"Testing "Weekly™~Text"

Like GRiDWRITE, GRiDBASIC assigns "Text" as the kind for file’s created with
the OPEN and PRINT# statements.

8-2 GRiDBASIC Reference Manual

CLOSE

FORMAT

NOTES

EXAMPLE

This statement closes a file or files previously enabled for program
access by an OFEN statement.

CLOSE [([#]fileTagl(,[#1fileTagll, ... 1]

The OPEN statement assigns a file tag number to a particular file
name. The CLOSE statement disassociates the tag from this file
name, so that you can reassign it to another file. With sequential
files, you must close a file to change its mode.

For example, you have to close a program operating a file in the
ocutput mode before you can append to it. You can reopen the same
file again with its previous tag or a different tag. For a further
discussion of fileTags and modes, refer to the OPEN statement later
in this chapter.

If you fail to give the CLOSE statement a fileTag, GRiDBASIC closes
all open files. NOTE: An END statement automatically closes all
files, but a STOP statement does not. GRiDBASIC allows the optional
number sign (#) that precedes the fileTag to provide compatibility
with other versions of BASIC.

1000 OPEN "I",1,""*f0"Testing *Weekly™"

1100 WHILE NOT EOF (1)

1200 INPUT# 1, Day$

1300 PRINT Day$

1400 WEND

1500 CLOSE 1

1600 PRINT: PRINT "Those are the days of our lives."
1700 END

In this example (taken from the OPEN statement below) line 1500
closes the "*Testing" file opened in line 1000. You can also close

multiple files with the same statement for example:

1000 CLOSE 3,4,15

Sequential Files 8-2

EOF

The end of file function.

FORMAT

NOTES

EOF (fileTag)

The EOF function returns a value that indicates if an end of file
has been reached on a specified file. If the end of file has been
reached, EOF returns a -1 (true) value. If the end of file has not

been

reached, a 0 (false) is returned.

The fileTag parameter is the number you specified when you opened
the file for input.

EXAMPLE

8-4

1000
1100
1200
1300
1400
1500
1600
1700

OPEN "I",1,"f0'Testing ‘Weekly™"
WHILE NOT EOF (1)

INPUT# 1, Day$

PRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."
END

NOTE: This example is one of three illustrating the OPEN command.
To make this work program work, you will have to type and run the

OPEN

Output example first (see the OPEN statement later in this

chapter).

GRiDBASIC Reference Manual

EOLN

FORMAT

NOTES

EXAMPLE

The end of line function.

EOLN(fileTag)

The EOLN function returns a value that indicates if an end of line
within a specified file has been reached. An end of a line within
a file is indicated by the carriage return-line feed combination.

If the most recent character read from a file is followed by a
carriage return-line feed, or if the end of file has been reached,
the EOLN function returns a -1 (true) value; otherwise, it returns a
Q (zero).

This function is especially useful when reading interchange files
from other GRiD applications.

The fileTag parameter is the number you specified when the file was
opened for input.

1000 OFEN "I",1,""f0"Testing *Al1Checks™Mykind"

1100 INFUT "Take balance from what row (2-13)": Row
1200 LET Lines=0

1300 WHILE NOT EOF (1)

1400 IF EOLN(1) THEN LET Lines=Lines+l

1500 INFUT# 1, Record$

1600 IF Lines = Row THEN LET Goal%$ = Record%
1700 WEND

1800 PRINT

1900 PRINT "The balance at row ";Row:" is "3;Goal$
2000 END

This program lets you take any number from the balance column of the
worksheet shown below in Figure B-1. For example, if you select row
3, the program will return the amount 479251.43 (the amount after
the 02/03 Deposit).

I+ you want to set up Figure 8-1 in a worksheet, make all but the
first item in the balance column a formula that adds current line’s
Amount to the previous Balance column amount. The first item is the
absolute amount, 491084.00. The second Balance item (478605.47)
results from adding -12478.53 to the absolute amount.

Sequential Files 8-5

Check no Payee Amount Bal ance

start balance 491084. 00

1000 Acme Realty -12478.53 47B405.47
1001 Local Power -5601.89 473003.58
1002 Telephone -3016.92 469986. 66
23457 02/03 Deposit 9264.77 479251.43
1003 Fass Freight -1032.14 478219.29
1004 Ace Credit -15629.01 4462590.28
1005 Fleet Rents -4912.30 457677.98
1006 Personnel =38971.95 421706.03
1007 A-1 Cleaning -856.795 420849.28
1008 StarInsurance -1478.42 419370.86
1009 Heavy Equip -25819. 66 393551.20

Figure 8-1. Worksheet Figures for Example Program

The EOLN function works by searching for the carriage return-line
feed combination. In the case of this example program, line 1400
increments a line counter (the variable "Line") each time it
encounters an EOLN. When the value of Line equals the value of Row
(input by the user), the program prints the last field.

NOTE: Record$ reads one record at a time, not one line. One cell,
begun and/or ended by the Tab character constitutes a record.

8-46 GRiDBASIC Reference Manual

GETFILESS

FORMAT

NOTES

EXAMPLE

The get file statement.

string$=GETFILE®% ("promptMessage")

Normally, programmers specify file pathnames with the program
development syntax -—-

*Device"Subject"Title™Kind™
For example: 1000 OPEN "I",1,"*f0*Testing ‘Weekly™Text™"

The GETFILE$ statement lets you bypass this syntax by bringing you
the standard file form. Filling in the form and confirming it
brings you the desired file.

You may prefer GETFILE$ over the pathname syntax i1f you have trouble
understanding pathname syntax or if you want your program to work
with different files. On the other hand, if your program uses just
one file (or only a few —— you could change a parameter before
running the program), go with pathname syntax. Likewise, if you
value quick access time, choose pathname syntax.

1000 MyFile$=GETFILE%$("Select file and confirm")
1100 OPEN "I",1, MyFile$%
1200 WHILE NOT EOF (1)

1300 INFUTH# 1, Day$
1400 PRINT Day$
1500 WEND

1600 END

In this example, line 1000 assigns the GETFILE$ function to the
string variable, MyFile% along with the prompt

Select file and confirm
The prompt appears in the message line when you run the program.
Once you give the file information to the form and confirm, the

string variable delivers that information to the program (see line
1100).

Sequential Files 8-7

INFUTH

FORMAT

NOTES

8-8

This statement assigns values to program variables by reading data
items from a sequential file.

INFUTH# fileTag,variableslList

The fileTag parameter is the number you specified when the file was
opened for input.

Data items read from the file are assigned to the variables
specified in the variablesList. Each data item read from the file
must be of the same type as that specified by the corresponding
variable name. The variable names in variableslList can be any mix
of numeric and string variable names, including subscripted
variables.

INPUT# expects the file to be in GRiD’s standard interchange file
format: data items are separated by Horizontal Tabs or Carriage
Return-Line Feed pairs. The PRINT# creates this interchange file
format, as do GRiD’s cell-based applications such as GRiDFILE and
GRiDPLAN.

If the end of a file is reached while an item is being input, the
item is terminated. If a type mismatch occurs between the data item
and the variable that it is being assigned to, or the file has an
insufficient number of items, the program halts and an appropriate
Brror message appears.

The INPUT# statement can obtain data from the keyboard; you open the
keyboard just as you would any other file. The keyboard’s filename
is "CI" (for Console Input). For example,

OPEN "1%,1,%CI"
If you choose keyboard input, you must write a prompt for your

user{s): unlike the INPUT statement, the INPUT# statement does not
print a guestion mark or a prompt message.

GRiDBASIC Reference Manual

O

EXAMPLE

1000
1100
1200
1300
1400
1500
14600
1700

NOTE: This example is one of three illustrating the OFEN command.

OPEN "I",1,"*f0*Testing ‘Weekly™"
WHILE NOT EOF (1)

INFUT# 1, Day$

PRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."

END

To make this work program work, you will have to enter and run the

OPEN

Output example first.

Sequential Files

8-9

INFUTSsS

FORMAT

NOTES

EXAMPLE

8-10

Prefer INFUT$ over INPUT# for handling communications files or for
reading large sections of files.

INPUTS (tag#, bytes)

INPUT$ fetches the number bytes (or characters) assigned to it in
its argument from the file represented by the file tag number. You
can assign part or all of the characters read from a communications
or other file into one string with INPUTS.

NOTE: If you give the statement a greater number of characters to
fetch than exist within the file, INPUT$ quits when it reaches the
end of file character.

1000 OPEN "I",1, "*$0°Testing‘AnotherDay™"

1100 INPUT "Get how many characters from this file"; HowMany
1200 WantToSee$=INPUT$ (1,HowMany)

1300 PRINT

1400 PRINT WantToSee$

1500 END

This example has the INPUT$ statement fetch as many character from
the file of weekdays as the user specifies. Unlike INPUT#, INFPUT$
does not convert the end-of-line characters {(carriage rerturn-line
feed). Rather, it prints the entire string of characters without
breaking at the end of lines (except for the right margin).

NOTE: The OPEN output example creates a text file with the days of
the week in it. You can create the same file by invoking GRiDWRITE
and typing the days in a vertical list. The INPUT$ program above
can read it, as it can read any text file.

GRiDBASIC Reference Manual

RLILL

The KILL statement erases a file.

FORMAT
KILL filename

NOTES
Follow the KILL statement with the file name of the file you want to
erase. You can present this in the form of a string variable. 1In
fact, the most efficient way to issue a KILL is with a file form
created with the GETFILE$ statement (discussed earlier in this
chapter). GETFILE$% delivers its data to a string variable.

EXAMPLE

1000 OPEN "0",1,""f0*Testing*NewFile": CLOSE 1

1100 PRINT "NewFile created!"

1200 PRINT "KILL NewFile by selecting 1t."

1300 LET Joy$=GETFILE$ ("Select FloppyDisk-Testing-NewFile-Text and
confirm")

1400 KILL Joy$

1500 PRINT: PRINT "NewFile KiLLed. See if NewFile is still there."
1600 Search$=GETFILE$ ("Press ESC after viewing files")

1700 PRINT: PRINT "KILL erased the file."

1800 END

Line 1000 creates a file. In line 1300, the GETFILE$ statement
presents a file form. We recommend GETFILE$ over typing file name
syntax. Line 1400 erases the file named in the form. Line 1600
presents second file form, so that you can see for yourself that
KILL indeed erased the file.

Sequential Files 8-11

LOC

FORMAT

NOTES

EXAMPLE

The locating statement.

expression=L0OC (tag#)

LOC locates a portion of a file by returning a number from a file.
What that number represents depends on the type of file involved.

Random The record number of the last record read or
written.

Sequential The number of records read or written since the
last OPEN.

Communications The number of characters waiting to be read in the

input buffer.

1000 OPEN "I",1,"*f0°*Testing ‘AnotherDay™"
1100 PRINT "Record", "Byte":PRINT
1200 WHILE NOT EOF (1)

1300 LET MyByte=LOC(1)
1400 INFUT# 1, Day$
1500 PRINT Day$, MyByte
1600 WEND

1700 CLOSE 1

1800 END

This example reads a sequential file. This example gets the byte
number of each record in a days-of-the-week file. If you want to
run this file, you can create a text file called "‘AnotherDay" by
typing in the days of the week in GRiDWRITE, putting each day on its
own line.

When you run this example, the "S" beginning Sunday appears as the
byte 1. The "M" in Monday as the ninth character. Why? Because in
addition to the six characters in "Sunday," LOC also counts the two
invisible characters at the end of the line -- carriage return and
line feed. Remember: LOC returns the absolute position of each
byte.

B-12 GR1DBASIC Reference Manual

LOF

The lenqth of file statement.

FORMAT
expression=L0OF(fileTaq)

NOTES
LOF returns a file's length in bytes. You must supply the file's
file tag in paratheses.

EXAMPLE

1000 OPEN "I",1, "*f0°Testing*AnotherDay™"

1100 Length=LOF (1)

1200 PRINT

1300 PRINT "The length of this file is "; Length; " characters."”
1400 END

Sequential Files 8-13

OFEN

NOTES

This statement opens a file for a particular kind of access.

OPEN "accessMode"[#1fileTag,"fileName"

Here is a typical OFPEN statement:
1000 OPEN "I", 3, "‘wO'Taxes‘'January"

The accessMode parameter specifies the way that subsequent PRINT#
and INPUT# statements in a program can access this file. Further,
we can make subsequent references to this program with the number
three, instead of with the pathname "‘*wO‘*Taxes‘January."”
GRiDBASIC has three access modes:

Gl e specifies sequential input
"0" specifies sequential output
A specifies sequential output to be appended

Note that a single OFEN statement can only establish access for one
sequential activity at a time. A sequential file cannot be OFEN for
both input and output at the same time. To change the type of
access you have assigned to a file, you must first CLOSE the file,
then execute another OFEN statement specifying the new type of
access.

The fileTag parameter is a number that you specify to be associated
with this fileName for a particular OPEN operation. Subsequent
accesses to the file with PRINT# or INPUT# statements can then refer
to the file simply by the fileTag number; you need not specify the
file name or type of access. NOTE: GRiDBASIC allows the optional
number sign (#) that precedes the fileTag for compatibility with
other versions of BASIC.

A file can be open under only one fileTag number at a time. You
cannot have a file simultaneously OFPEN for input and output, for
multiple inputs, or for multiple outputs. To perform two access
operations, you need two open operations and two tag numbers. For
example:

1000 OPEN "I",1 "*MyFile"
1100 OPEN "0",2 "“YourFile"

This opens the file titled "“MyFile" for input and gives 1t tag
number 1. Line 1100 opens a second file to receive this data
(output), "*YourFile," with the tag number 2.

B-14 GRiDBASIC Reference Manual

The fileName parameter can be any name you have specified up to 80

characters in length.

near
file

For details, see "File Naming Conventions"

the end of Chapter Z. You can also use the standard Compass

form to get file names for your BASIC programs; see the

GETFILE$ statement earlier in this chapter.

EXAMPLE (OUTPUT)

1000
1100

OFEN "0",1,"*¥0"Testing "Weekly™"
DATA Sunday, Monday, Tuesday. Wednesday., Thursday, Friday,

Saturday

1200
1300
1400
1500
1600
1700
1800
1900

This

FOR Week=1 TO 7

READ Day$#

FRINT Day$

FRINT# 1, Day$

NEXT Week

CLOSE 1

PRINT: PRINT "The Weekly file is closed.”
END

example creates a file with the title "“Weekly" and writes

names of the days of the week into it.

EXAMPLE (INPUT)

1000
1100
1200
1300
1400
1300
1600
1700

This
from

OPEN "I",1,"*f0°Testing ‘Weekly™"

WHILE NOT EOF (1)

INPUTH 1, Day$

FRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."
END

example opens the previous file, retrieves the days of the
it, and prints them on the screen.

Sequential Files

the

week

B8-13

EXAMPLE

B-16

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

This

(APPEND)

OPEN "A",1,"*f0°Testing ‘Weekly™"

DATA Yesterday, Today, Tomorrow, The Day after that
FOR Now = 1 TO 4

READ Day$

PRINT# 1, Day$

FRINT Day$

NEXT Now

CLOSE 1

PRINT: PRINT "Those were the days, my friend."

END

example appends four lines to the original file -- Yesterday,

Today, Tomorrow, and The Day after that. If you re-run the INPUT
example, you will see these new additions.

GR1DBASIC Reference Manual

FRINTH+

FORMAT

NOTES

The PRINT# statement writes data to a sequential file.

FRINT#fileTag,expressionl{,!:}][expression] ... [{,i32}]

The fileTag parameter is the number you specified when you opened
the file for output. It identifies the sequential file that is to
receive the data.

PRINT# writes the data contained in the expession{s) to the file
with appropriate delimiting characters automatically inserted. Your
choice of punctuation (either a comma or a semicolon) between
expressions determines the delimiting characters written to the file
to separate the items in each expression. You can use either commas
(,) or semicolons (;) as separators.

NOTE: If you intend to print to an Epson printer and want your
commas to perform a tabbing function, see the "Epson Notes" at the
end of this discussion.

If vou place a semicolon between two expressions, FRINT# writes the
values of the two expressions with no delimiting character between
them.

If you place a comma between two expressions, a horizontal tab
character is written to the file separating the contents of the
first expression from the contents of the second expression.

If a list of expressions terminates without a comma or semicolon,
PRINT# writes a carriage return-line feed at the end of the list.
If a comma terminates a list of expressions, FRINT# places a
horizontal tab character after the last expression. If a semicolon
terminates a list of expressions, it suppresses any delimiting
character. Thus a subsequent FRINT# statement begins writing data
to the file beginning at the point where the last FRINT# left off.

NOTE: The format of the file created by the PRINT# statement is
compatible with the interchange file format. As a result,
cell-based GRiD applications such as GRiDFLOT, GRiDFILE and GRiDFLAN
can work with these files.

Choose the INFUT# statement to input data from a file that vyou
created with the FRINT# statement.

Sequential Files 8-17

EPSON NOTES

EXAMPLE

For the Epson to interpret GRiDBASIC's commas correctly —- providing
tabs -- you must follow the PRINT# command with the file tag number,
an ESC D (represented by CHR$(27)+"D") and the column number of each
tab preceded by the CHR$ statement. Concatenate these tab positions
with the plus sign (+)., All such statements must end with the null
character (CHR$(0). Do NOT exceed an B0-character line. An example
command assigning 15 character-wide tabz follows:

PRINT# 1, CHR®(27)+"D"+CHR$ (15)+CHR$ (30) +...+CHR$ (0)

1000 OPEN "0",1,"*f0*Testing ‘Weekly™"

1100 DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

1200 FOR Week=1 TO 7

1300 REARD Day$

1400 PRINT Day$

1500 PRINT# 1, Day$

1600 NEXT Week

1700 CLOSE 1

1800 PRINT: PRINT "The Weekly file is closed."
1900 END

This example (from the OPEN statement) writes the days of the weeks
to a file called "‘*Weekly." The PRINT# statement in line 1300
transmits this data one string (or day!) at a time.

B-18 GR1DBASIC Reference Manual

FRINTH USING

FORMAT

NOTES

EXAMPLE

The PRINT# USING statement writes data to sequential files or to the
printer in a specified format.

PRINT# fileTag, USING; formatstring; {numericvaristringvar list}

FRINT# USING takes the same arguments as PRINT USING. The only
syntactical difference between the two is the presence of the number
sign (#) and tag number following the word "FRINT." For details on
this statement®s many formatting possibilities, see FRINT USING in
Chapter Seven.

1000 OPEN "0O",1, "“epson"
1100 FOR Times = 1 T0O 12
1200 LET Number = 100000XRND(1)

1300 PRINT Number;" "3: PRINT USING "$$######, . .#%"; Number
1400 PRINT# 1, Number:
1500 FRINT# 1, USING " SEH#HBHH, . #8" 1 Number

1600 NEXT Times
1700 CLOSE 1
1800 END

This example generates 12 random numbers and then prints and formats
them —- to the screen and to the printer. Line 1400 prints the
unformatted number; line 1500 does the formatting. In this case, we
have turned the number into a dollar amount and preceded that with
spaces to separate the unformatted and formatted numbers. Figure
8-2 below is a typical printout.

Note that to print, you must open your printer as a file (line 1000)
and give it a tag number. The PRINT#, PRINT# USING and CLOSE
statements all take advantage of this tag number.

This example creates a printout to the screen and on paper that
resembles the printout below in Figure 8-2. The left column
displays the random number we generated. The right column shows how
PRINT# USING formatted the same number.

Sequential Files 8-19

Figure 8-2.

6001.3733119707

62092.0119020371
38194.8577096208
82920.5767910277
7277.02754253452
B1165.7892729076
3288.31921873808
BB273.4416723888
89706.2638284886
52875.5626764324
65941.8631265736
53293.6598764019

PRINT# USING formatting of Random Numbers

GRiDBASIC Reference Manual

$6,001.37

$62,092.01
$38,194.86
$82,920.58
$7,277.03
$81,165.79
$3,268.32
$88, 273. 44
$89,706.26
$52,875.56
$65,941.86
$53,293. 66

CHAPTER NINE: RANDOM FILE STATEMENTS

Random access (also called "direct access") files differ from sequential files
in several important ways. First, each data unit or record is of a fixed
length (specified by the programmer). Second, you can go directly to anvy
record within a random access file, rather than having to go through the
entire file. This is true for both read and write activities. Third., random
files have a buffer in RAM memory. Your program interacts with the buffer,
rather than directly with your storage device.

Fandom access files share statements with sequential files. Note, however,
that some of these statements don’t behave exactly the same. For example, the
LOF statement in a sequential file returns the length of that file in bytes.
In a random file, LOF returns the total number of records in the file. These
two numbers only equal each other when a random file has one-byte long
records'

Another example. The OFEN statement has only one access mode for opening a
random access file —— "R" (Sequential files have three). With random files,
it doesn’t matter whether you are opening the file for INPUT or OUTFUT.
Further, the OFEN statement in a random access file also takes an optional
argument after the file name, the buffer length.

Although this chapter contains plenty of working examples, you may want to
look at the basic steps involved in creating random access write and read

files. First to create a random access file and write data to it, follow

these steps.

Random Files 9-1

’l’-\ RANDOM ACCESS WRITE FILE

(:) OPEN the file with an "R" and an optional buffer size specification.

®

®

®

1000 OFEN "R",1,"*f0*Testing ‘Demograf.i1™",30

Define the sizes of the fields in your record buffer with the FIELD
statement.

1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$

Gather the data you want to write. You can do this by reading from other
files, with INPUT and/or READ DATA statements, for example.

1200 INFUT "Name"; N$%

Put this data into the buffer with the LSET or RSET statements. Use the
variable names you assigned to fields in the FIELD statement.

1600 LSET Name$=N$

@ Write the data to the file with the PUT statement.

®

2000 PUT 1

Close the file.

2200 CLOSE 1

Here’s an outline for reading data from a file.

’ A RANDOM ACCESS READ FILE

®

&

©@ O O

OPEN the file with an "R" and an optional buffer size specification.
1000 OPEN "R",1,"*f0°Testing*Demograf.1™",30
Define record buffer field sizes in with the FIELD statement.
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys
Use the GET statement to read your data from the file.
1500 GET 1, RecordNo
Process this data and send it to the screen or other device.
1600 PRINT Name$;
Close the file.

2400 CLOSE 1

9-2 GRiDBASIC Reference Manual

CVI .

FORMAT

NOTES

EXAMPLE

cvs, CVD

The convert string to integer function.
The convert string to single-precicsion function.
The convert string to double-precision function.

CVI(2-byte string)
CVS(8-byte string)
CVD(16-byte string)

Programmers often convert numeric values to strings so they can
format these values with the LSET or RSET statements. However, the
system cannot perform mathematical operations on string values.
Only on numeric values. Therefore, they convert string values back
to numbers. CVI converts a 2-byte string, CVYS converts a 4-bvyte,

and CVD converts an 8-byte string.

Choose the CV function that matches the MK$ function that made the
original number into a string. Table 9-1 below illustrates this.

MKk$ Form CV Form No. of Bytes
MKI$ CVI 2
MES$ cvs)
MKD$ CVD 8

Table 9-1. Choosing MK$ and CV Functions

1000 OPEN "R",1," “f0"Testing *MyNumbers™~",8
1100 FIELD 1, B AS Number$

1200 FOR Count=1 TO 3

1300 INFUT "Any number"; N

1400 LSET Number $=MkD%$ (N)

1500 PUT 1

1600 NEXT Count

1700 PRINT:PRINT "MKD$ Form"; TAB(13) "After CYD": PRINT

1800 FOR Count=1 TO 3

1900 GET 1, Count

2000 PRINT Number$;

2100 PRINT TAB(13) CVD(Number%)
2200 NEXT Count

2300 PRINT

2400 END

Random Files 9-3

This program asks you to enter any three numbers. It then converts
them to string format in line 1400. It then writes these numbers tr
the screen and shows them in the form in which they are stored (the
"MKD$ Form") and the numeric form they take after conversion to
double precision (CVD). See the MKD$ function below for details on
its operation.

9-4 GRiDBASIC Reference Manual

FIELD

FORMAT

NOTES

EXAMPLE

FIELD sets up a random file buffer.

FIELD [#] tag#, number AS string$ [, number AS string$] ...

The FIELD statement breaks the buffer into individual fields. Thus
the buffer is the length of the record that comprises these fields.
To maximize efficient use of memory and storage space, add the
numbers of characters for each field together and give the resulting
sum as the optional buffer length parameter.

The AS statement assigns buffer space in characters f{(indicated by
the number preceding AS) to a variable (following AS).

1000 OFEN "R",1,"*f0°Testing ‘Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys
1200 WHILE NOT EOF (1)

1300 GET 1

1400 PRINT Name$;

1500 FPRINT Age%;

1600 PRINT City$

1700 PRINT

1800 WEND

1900 CLOSE 1

2000 END

This program reads in all the records from the ‘Demograf.l file. It
allots space in the (random) buffer for its three fields as follows:

12 characters for the string variable Name$, 3 characters for the
string variable AGE$, and 9 to the string variable ZIPS.

Random Files 9-5

GET

The GET statement retrieves data for random file access.

FORMAT
GET [#] tag#[. numberl

NOTES
The GET statement reads one record at a time into the buffer. If
you do not specify a number, any reading of these records causes
their content to appear in the order in which they exist in the
file. If you specify a number, the record belonging to that record
number appears. Thus if you ask for
1500 GET 1,3
line 1500 will get the third record from the file you assigned the
tag number of 1.

EXAMPLE

1000 OPEN "R",1,""*f0*Testing ‘Demograf.1™",30

1100 FIELD 1, 12 AS Name$, 3 AS Ages, 15 AS Citys
1200 LET Items=LOF(1)

1300 PRINT "Record number (between 1 and "; Items;
1400 INPUT ") please", RecordNo

1500 GET 1, RecordNo

1600 PRINT Name$;

1700 PRINT Age$;

1800 PRINT City$

1200 INPUT "This person’s true age", A%

2000 PRINT

2100 LSET Age$=A%

2200 PUT 1, RecordNo

2300 GOTO 1300

2400 CLOSE 1

2500 END

This example reads whatever record number you specify (in line 1400}

and prints the appropriate data on the screen. The program then
gives you the opportunity to change the age parameter.

9-6 GRiDBASIC Reference Manual

LOC

FORMAT

NOTES

EXAMPLE

LOC locates a record.

LOC (tag#)

LOC returns the record number of the next record that you can either
GET or PUT. When this function sees the EOF marker, it looks no
further.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

This

OFEN "R",.1,"*f0°Testing‘Demograf.1™".30
FIELD 1, 12 AS Name$, I AS Age$, 15 AS City$
WHILE LOC(1)<=8

PRINT LOC(1)3" "3

GET 1

PRINT Name$;

FRINT Ages$:

PRINT City$

FRINT

WEND

CLOSE 1

END

example uses LOC to test whether the WHILE WEND should continue

{line 1200) and to print each record’s number before printing the
contents of the record (line 1300).

Random Files 9-7

LOF

The length of file statement

LOF(fileTag)

LOF returns a file’s lenagth in records.

FORMAT

NOTES

EXAMPLE
1000
1100

1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

In this example,

of records in the file (LOF).

OPEN "R",1,"*f0"Testing ‘Demograf.1™",30
FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
WHILE LOC(1) <= LOF(1)

PRINT LOC(1)3" "3

GET 1

PRINT Name$;

PRINT Age$;

PRINT City$

PRINT

WEND

CLOSE 1

END

equal to LOF, the WHILE WEND loop continues.

9-8 GRiDBASIC Reference Manual

line 1200 we test whether to continue the WHILE
WEND loop by comparing the file record number (LOC) with the number
If the record number is less than or

A4

LSET

FORMAT

NOTES

EXAMPLE

and RSET

The LSET and RSET statements

LSET fieldString=programString
RSET fieldString=programString

LSET and RSET statements assign a string created within the current
program to one of the string variables defined in the FIELD
statement. In the event that a value does not take up all the
string space allotted to it, LSET will left-justify the value within
the space. Similarly, RSET right-justifies when space remains.
NOTE: You must convert numeric variables to string variables before
doing this. Either the MK$ statement (see below) or the S5TR$ can do
the job.

CAUTION: Do not use a field variable in an input statement nor put
it on the left side of an assignment (LET) statement. Either
practice causes the variable pointer to point not to the random file
buffer, but to string space. The result: garbage in your file.

1000 OFEN "R",1,""f0°Testing *Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
1200 INFUT "Name"; N$

1300 IF N$="=" THEN GOTO 2200

1400 INFUT "Age":; A%

1500 INFUT "City"; C%

1600 LSET Name$=N$

1700 LSET Age$=A%

1800 LSET City$=C%

1900 FRINT

2000 PUT 1

2100 GOTO 1200

2200 CLOSE 1

2300 PRINT: PRINT "This input session is over"
2400 END

This example writess data to a random access file. The LSET
statements (lines 1600-1800), it assign the values in the input
variables (lines 1200, 1400, and 1500) to the field variables
(assigned in line 1100). If you wanted your output right-justified
instead of left—justified. you would substitute RSET for each
occurence of LSET.

Random Files 9-9

MKIS,

FORMAT

NOTES

EXAMPLE

MKS$, MKDS$

The make string function.

MEI$ (expression)
MKS$ (expression)
MKD$ (expression)

The MK$ function converts numeric expressions (including variables
and numbers) into 4-byte strings. You must convert any numeric
expressions before submitting them to the LSET or RSET. (You must
choose one of these two to put data into the buffer).

As a general rule, choose MKD$ to convert your strings. At 8 bytes,
it yields the greatest precision and, with its corollary CVD,
minimizes the possibility for returning an inaccurate number from
storage.

1000 OPEN "R",1,"*f0*Testing *MyNumbers™",8
1100 FIELD 1, 8 AS Number$

1200 FOR Count=1 TO 3

1300 INPUT "Any number"; N

1400 LSET Number $=MkD%$ (N)

1500 PUT 1t

1600 NEXT Count

1700 PRINT:PRINT "MKD$ Form"; TAB(13) "After CVD": PRINT
1800 FOR Count=1 TO 3

1900 GET 1, Count

2000 PRINT Number$;

2100 PRINT TAE(13) CVD{(Number$)

2200 NEXT Count

2300 PRINT

2400 END

This program asks you to enter any three numbers. It then converts
them to string format in line 1400. Note that we put the result of
our MKD$ function in the string variable, Number$%. Lines 1900 to
2100 bring the numbers back from storage —— in the MK$ string form
and in the converted form. See the CVYD function above for details
on its use.

9-10 GRiDBASIC Reference Manual

OFEN

FORMAT

NOTES

The OFEN statement creates a buffer in RAM memory and prepares the
system to write data to or read data from the specified file. If
the file doesn’t exist, OFPEN creates the file title. It cannot,
however, create a subject.

OFPEN "R"[#]fileTag,"fileName",[bufferLengthl

Here is a typical OFEN statement:
1000 OPEN "R", 3, "‘*wQ‘Taxes‘*January", 63

When placed in the context of random access files, OPEN has only one

accessMode parameter -- "R" for Random. This specifies the kind of
file manipulation activities the fill allows. NOTE: where
sequential files have three possible letters -- "I," "0O," and "A,"
random files have just one accessmode -- "R."

NOTE: Unlike sequential files that must CLOSE and issue a new OPEN
statement before changing its access activity, random files can do
both input (GET) and output (PUT) under the same OFEN statement.
See the example under the MKD$ command. For details on sequential
files, see the OPEN statement in Chapter Eight.

The fileTag parameter is a number that you specify to be associated
with this fileName for a particular OFEN operation. Subsequent
accesses of the file with GET or PUT statements can then refer to
the file simply by the fileTag number; you need not specify the file
name or type of access. In the example above, this number is 3.

A file can be open under only one fileTag number at a time. NOTE:
GRiDBASIC allows the optional number sign (#) preceding fileTag for
compatibility with other versions of BASIC.

The fileName parameter can be any name you have specified up to 80
characters in length. For details, see "File Naming Conventions”
near the end of Chapter 2.

The optional bufferLength parameter sets the size of the buffer.

For greatest efficiency, you should assign this the same number of
bytes as the total number bytes in the field statement. In the
example above, we defined the length of the buffer as &3 characters.
The default length for the buffer is 128 bytes.

Random Files 9-11

EXAMPLE

9-12

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

This

OPEN "R",1,"*f0'Testing ‘Demograf.1™",30
FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys$
INPUT "Name"jy N$

IF Ng="=" THEN GOTO 2200

INFUT "Age"; A$%

INPUT "City"; C$

LSET Name$=N$

LSET Age$=A%

LSET City$=C$%

PRINT

FUT 1

GOTO 1200

CLOSE 1

PRINT: PRINT "This input session is over"
END

example inputs data to a random access file.

Its OPEN

statement assigns this file the access mode parameter., "R" and file

tag number "1."

It then specifies the floppy drive as the device,

"Testing" as the subject, and "Demograf.1" as the title. Finally,
it sets aside 30 bytes for the file’s buffer length. Note that 30
is the sum of the lengths of the three records given in the FIELD
statment (line 1100).

GRiDBASIC Reference Manual

FUT

FORMAT

NOTES

EXAMPLE

The PUT statement writes data toc a random buffer.

FUT [#]fileTag [, expressionl

The PUT statement writes data to a random file buffer for transfer
to the appropriate storage medium. PUT understands the optional
expression (whether a constant or a variable) as a record number.

If another record already has the number you specify, PUT will write
over it. If you fail to specify a number, PUT assigns the next
available number.

1000 OPEN "R",1,"*f0"Testing ‘Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
1200 INPUT "Name"; N$

1300 IF N$="=" THEN GOTO 2200

1400 INPUT "Age": A%

1500 INPUT "City"; C%

1600 LSET Name$=N$

1700 LSET Age$=A%

1800 LSET City$=C$%

1900 FRINT

2000 PUT 1

2100 GOTO 1200

2200 CLOSE 1

2300 PRINT: PRINT "This input session i1s over"
2400 END

This program puts data into a file called °“Demoagraf.l. Each time
through the loop, it puts a record with three fields -- Name$, Age$
and Citys.

Random Files 9-13

CHAPTER TEN: GRAPHICS STATEMENTS

This chapter discusses GRiDBASIC’s graphics statements. With these statements
you can draw, invert, erase, and four figures:

e The box

e The circle
s The dot

@ The line

This manual has one example each for the circle, dot, and line statements (for
DRAW, INVERT, and ERASE). Each example shows how the graphic appears after a
particular statement by placing part of the graphic against the screen and
part against a white box. See Figures 10-1, 10-2, and 10-3 below. We place
these examples at the front of the chapter for easy access and comparison.

The programs that generated these figures are listed later in this with each
relevant statement.

You can also position character strings (DrawChars), create menus, move boxes,
and place prompt messages.

In graphics syntax, » and y represent (respectively) the horizontal and

vertical coordinates of the point being described. These points are screen
bits or "pixels." The screen is 320 pixels wide and 240 pixels deep.

Graphics Statements 10-1

DrawCircle (\
InvertCircle (f;

N-v

EraseCircle

Proaram stopped at line 1400,

Figure 10-1. The Three Circle Graphics

DrawDot

InvertDot

EraseDot

Program stopped at line 3200

Figure 10-2. The Three Dot Graphics

10-2 GRiDBASIC Reference Manual

Drawline

Invertline

Eraseline

Program stopped at line 1700

Figure 10-3. The Three Line Graphics

Graphics Statements 10-3

CLEARMSG

FORMAT

NOTES

EXAMPLE

10-4

The clear message statement.

CLEARMSEG

CLEARMSG clears any prompt previously specified by the STACKMSGE
statement. I+ you i1nclude a STACEMSG prompt 1nside a loop or want
to move on to a new message, vou must clear the old meszsage with
CLEARMSEG. If you don"t, mescagecs stack up., as shown 1n Figure 10-4,
See STACKMSG later 1n this chapter for detailes.

1000 FRINT "Fress a key"

1100 STACEMSG "Fress ESC to exat”

1200 STACKEMSG "The StackMsg Frogram”

1300 LET Key$=INEEY$

1400 IF Key$="" THEN GOTO 1300 ELSE FRINT "kKey 1s: "3 Kev$
1500 CLEARMSG

1600 STACKMSG "End

1700 STACKMSG "The

If it weren’t for line 1500, the prompt would look like the one 1in

Figure 10-4. CLEARMSG clears the first prompt =o that the final
prompt looks like the one in Figure 10-5.

Tha

End
Tha SteclkdMsa Program
Press ESC to exit

Figqure 10-4. Before CLEARMSG

Figure 10-5. After CLEARMSG

GR1DEASIC Reference Manual

DOMERNU

FORMAT

NOTES

EXAMPLE

This statement createcs a menu.

variable=DOMENU (prompt$. choice$ichoice¢lichoice$l ...)

The DOMENU statement draws a menu at the bottom of the screen. Thas
menu resembles the ones you have seen in GRiD applications. DOMENU
asks you to specify the prompt message (prompt$) at the bottom of
the screen and the various choices the menu will offer.

Separate each choice with a bar (i) by pressing CODE-SHIFT-;

DOMENU assigns a number to each choice, the first choice 1= 1, the
second Z, etc. In this way, you can execute the choice with an ON
GOTO or ON GOSUE statement. Only the size of the screen limits the
number of choices vou can present.

1000 LET Ficky$="Make your play"

1100 LET Yours=DOMENU(Picky$,"5tand and fightiFlee and retreatiBuy
“em out")

1200 IF Yours=0 THEN LET Ficky$="0Oh no vou don’t: Choose"

1300 ON Yours GOTO 1500,1600,1700

1400 END

1500 PRINT "Fire when ready., Gridley":END

1600 PRINT "Come back. come back, come....":END

1700 PRINT "Okay. Let’s talk, turkey":END

Thie example presents a menu as shown in Figure 10-4. "Ficky$" 1=
string variable to which we assign the prompt {("Make vour play").

Jztarnd and tiaht |

Flee and retreat
Bug 'em out

Figure 10-4. A Menu Created with DOMENU

Graphics Statements 10-5

DRAWEROX

The DRAWBOX statement draws a solid {(light-colored)

rectangle.

FORMAT
DRAWEDX topLeft (x.y) extent (x.,y)

NOTES
DRAWBOX needs tour coordinates. The first two describe the top left
corner ot the box. The second two describe the horizontal and
vertical extensions from the starting point.

EXAMPLE

1000 INFUT "Top left horizontal coordinate";A
1100 INFUT "Top lett vertical coordinate":E
1200 INFUT "Extend how far horizontally":C
1300 INFUT "Extend how far vertically":;D

1400 EraseBox ©,0,320,240

1500 DrawBox A. B, C, D

1600 FOR Pause=1 TO 100: NEXT Faucse

1700 LOCATE 3,210

1800 PRINT "This box has coordinates ": A;". ":B:",
1900 FOR Pause=1 TO 100: NEXT Pause

2000 END

This program asks you to describe a bnx and then draws that box.

See Figure 10-7 for an example.

This box has coordinates 48, 7@, 188, 130
Proaram stopped at line 2000

Figure 10-7. An Example of DRAWEDX

10-6 GR1DBASIC Reference Manual

(g

DRAWCHARS

FORMAT

NOTES

EXAMPLE

DRAWCHARS places characters on the screen at the stated coordinates.

DRAWCHARS string x.y

The coordinates in DRAWCHARS define the upper left pixel of the
first character in the string. This statement accepts strinas
surrounded bv guotation marks. strings defined by the CHR¢ statement
and ASCII numbers, or a combination of the two. You cannct join
strings with the semicolon {(as with the FRINT statement. Instead,
yvou must always concatenate them with the plus =ign (+).

1000 DRAWCHARS "What's that ringinag?",10.10
1100 FOR Starts=1 TO 100: MEXT Starts

1200 FOR Fhone=1 TO 3

1300 LET Ring=l1

1400 WHILE Ring+«<30

1500 DRAWCHARS CHR$(142) +CHR$(143), 40,40
1600 DRAWCHARS CHR$(142)+CHR$(143) ,42, 40
1700 LET Ring=Ring+1

1800 WEND -

1900 FOR Time=1 TO 100: NEXT Time

2000 NEXT Phone

2100 DRAWCHARS "Only the phone",10,70

2200 FOR FPause=1 TO 100: NEXT Fause

2300 DRAWCHARS "Another "+ CHR$(137)+CHR$ (138)+CHR$(139)+CHR%(140) +
" presentation",10, 90

2400 END

Lines 1000 and 2100 demonstrate placement of a string enclosed in
quotation marks. Lines 1500 and 1800 show concatenation of
individual ASCII characters {(Line 1600 the string repositions the
string for an animation effect). Line 2300 combines both quotes and
ASCII codes to print the program’s final message. The loops at
lines 1100 and 2200 delay execution of the program for another
effect. See Figure 10-8 for a picture of this program.

Graphics Statements 10-7

What's that ringing?

=]

Only the phone

Another GRID presentation

Proaram stopped at line 2498.

Figure 10-8. The DRAWCHARS Example

10-8 GR1DBASIC Reference Manual

DRAWCIRCLE

FORMAT

NOTES

EXAMPLE

This statement positions and draws the outline of a circle.

DRAWCIRCLE x,y, radius

The x.y coordinates specify the center of the circle.

measured in screen bits.

1000
1100
1200
1300
1400
1500
1600
1700

DRAWBOX 120, 30, 90, 140

DRAWCIRCLE 120,560,220

LOCATE 10, &0: PRINT "DrawCircle"
INVERTCIRCLE 120,100,20

LOCATE 10, 100: PRINT "InvertCircle"
ERASECIRCLE 120, 140, 20

LOCATE 10,140: PRINT "EraseCircle"
END

The radius 1s

Graphics Statements 10-9

DRAWDOT

FORMAT

NOTES

EXAMPLE

10-10

The DRAWDOT statement turns on one screen bit (also known as a
"nixel").

DRAWDOT x,vy

The two arguments are the dot’s horizontal and vertical coordinates.

1000 DRAWBOX 120, 30, 90, 140

1100 LOCATE 10, S55: PRINT "DrawDot"
1200 LOCATE 10, 95: PRINT "InvertDot"
1300 LOCATE 10, 135: PRINT "EraseDot"
1400 REM The DrawDot Routine

1500 LET X=B80: Y=60

1600 WHILE X<=160

1700 DRAWDOT X,Y

1800 LET X=X+5

1900 WEND

2000 REM The InvertDot Routine
2100 LET X=B0: LET Y=100

2200 WHILE X<=160

2300 INVERTDOT X,Y

2400 LET X=X+5

2500 WEND

2600 REM The EraseDot Routine

2700 LET X=B0:Y=140

2800 WHILE X<=160

2900 ERASEDOT X,Y

3000 LET X=X+5

3100 WEND

3200 END

This program differs from programs for the other figures in order to
put five pixels between the dots. Without these spaces, you cannot
tell the difference between similar statements for DOT and LINE.

GRiDBASIC Reference Manual

DRAWL INE

The DRAWLINE statement draws a line.

FORMAT
DRAWLINE startFoint (x.y) endpoint {(x,v)

NOTES
DRAWLINE needs four arquments —— the horizontal and vertical points
for the start of the line and the horizontal and vertical points for
the end of the line.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWLINE 100, 60, 130, 60

1200 LOCATE 10, 60: PRINT "Drawline"
1300 INVERTLINE 100, 100, 130, 100

1400 LOCATE 10, 100: FRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

Graphics Statements 10-11

ERASEROX

FORMAT

NOTES

EXAMPLE

10-12

This

statement erases a box in the position described by its

coordinates.

ERASEBOX topLeft (x,y) extent (x,y)

You cannot see ERASEBOX working against a dark backaround. Only
against a light background. The act of erasing only turns screen

bits

1000
1100
1200
1300
1400
1500
1600
1700
1800
1200
2000
2100
2200
2300

This

off.

LET A=120: B=B0: C=80: D=80

DrawBox A,B,C,D

FOR Pause=1 TO 200: NEXT Pause

LET A=140: B=100: C=40: D=40

PRINT "This erases the center of the box"
GOSUEB 2000

FRINT "And this erases everything."
LET A=0: B=0: C=320: D=240

GOSUEB 2000

END

FOR Fause=1 TO 200: NEXT Pause
EraseBox A,B,C.D

FOR Pause=1 TO 200: NEXT Fause
RETURN

example draws a box, erases its center, and then clears

(erases) the entire screen. Figure 10-9 shows the program run
through the first erasure.

GRiDBASIC Reference Manual

This eras==z the center of the box

Proaram stopped at line 2200

Figure 10-9. An Example of ERASEBOX

Graphics Statements 10=13

ERASECIRCLE

This statement erases a circle of the size and position described by \ .
ite coordinates.

FORMAT
ERASECIRCLE x.,y, radius

NOTES
You cannot see the circle described by ERASECIRCLE unless you erase
over a white area. The x.y coordinates specify the center of the
circle. The radius is measured in screen bits.

EXAMPLE

1000 DRAWEOX 120, 30, 20, 140

1100 DRAWCIRCLE 120,60,20

1200 LOCATE 10, &0: PRINT "DrawCircle"
1300 INVERTCIRCLE 120,100,20

1400 LOCATE 10, 100: PRINT "InvertCircle"
1500 ERASECIRCLE 120, 140, 20

1600 LOCATE 10,140: PRINT "EraseCircle"
1700 END

10-14 GRiDBASIC Reference Manual

ERASEDOT

FORMAT

NOTES

EXAMPLE

This statement erases a dot.

ERASEDOT x,vy

ERASEDOT turns off one screen bit. It is only visible when
resides on a light backaground.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
23200
2400
2500
2600
2700
2800
2900
3000
3100
3200

This

DRAWEDX 120, 30, 90, 140
LOCATE 10, S5: PRINT "DrawDot"
LOCATE 10, 95: PRINT "InvertDot"
LOCATE 10, 135: PRINT "EraseDot"
REM The DrawDot Routine

LET X=B0: Y=60

WHILE X<=1&0

DRAWDOT X,Y

LET X=X+5

WEND

REM The InvertDot Routine

LET X=80: LET Y=100

WHILE X<=1&60

INVERTDOT X,Y

LET X=X+5

WEND

REM The EraseDot Routine

LET X=B80:Y=140

WHILE X<=160

ERASEDOT X.Y

LET X=X+5

WEND

END

program differs from programs for the other figures in

put five pixels between the dots. Without these spaces, you
tell the difference between similar statements for DOT and LINE.

Graphics Statements

the dot

order to
cannot

10-15

ERASEL INE

This statement erases a line in the position described by its
coordinates.

FORMAT
ERASELINE startPoint (x,y) endPoint (x,y)

NOTES
ERASELINE needs four arguments -- the horizontal and vertical points
for the start of the erasure and the horizontal and vertical points
for ending erasure.

EXAMPLE

1000 DRAWEOX 120, 30, 90, 140

1100 DRAWLINE 100, &0, 150, &0

1200 LOCATE 10, 60: PRINT "Drawline"
1300 INVERTLINE 100, 100, 150, 100
1400 LOCATE 10, 100: PRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

10-16 GRiDBASIC Reference Manual

INVERTEOX

This statement inverts the "colors" of a box in the position
described by its coordinates.

FORMAT
INVERTEOX ToplLeft ix.y) Extent (x,v)

NOTES
The inversion here amounts to turning off bits that are on and
turning on bits that are off. Acs a result, INVERTRBOX describes a
light rectangle on a dark backaround and a dark rectangle againcst a
light background. See Figure 10-10 below.

EXAMPLE

1000 DRAWEBOX 80,80,100, 100
1100 LET A=40: B=100: C=1: D=1
1200 WHILE A<Z00

1300 INVERTROX A,120,5,20

1400 A=A+S
1500 WEND
1600 END

Proaram stnpped at line 1600.

Figqure 10-10. An Example of INVERTBOX

Graphics Statements 10-17

INVERTCIRCLE

This statement positions and draws a circle the “colors" of which
are the opposite of the background area.

FORMAT
INVERTCIRCLE x,y, radius

NOTES
The inversion here amounts to turning off bits that are on and
turning on bits that are off. As a result, INVERTCIRCLE describes a
light circle on a dark background and a dark circle against a light
background. The x.y coordinates specify the center of the circle.
The radius is measured in screen bits.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWCIRCLE 120,60,20

1200 LOCATE 10, &0: PRINT "DrawCircle"
1300 INVERTCIRCLE 120,100,20

1400 LOCATE 10, 100: PRINT "InvertCircle"
1500 ERASECIRCLE 120, 140, 20

1600 LOCATE 10,140: PRINT "EraseCircle"
1700 END

10-18 GRiDBASIC Reference Manual

INVERTDOT

INVERTDOT draws a dot of a "color" opposite that of its background.

FORMAT
INVERTDOT topLeft (x,y) extent (x,y)

NOTES
INVERTDOT places a light dot on a dark background and a dark dot on
a light background. If a screen bit is on, INVERTDOT turns it off.
If off, it turns i1t on.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 LOCATE 10, 55: PRINT "DrawDot"
1200 LOCATE 10, 95: PRINT "InvertDot"
1300 LOCATE 10, 135: PRINT "EraseDot"
1400 REM The DrawDot Routine

1500 LET X=80: Y=60

1600 WHILE X<=1&0

1700 DRAWDOT X,Y

1800 LET X=X+5

1900 WEND

2000 REM The InvertDot Routine

2100 LET X=80: LET Y=100

2200 WHILE X<=1460

2300 INVERTDOT X,Y

2400 LET X=X+5

2500 WEND

2600 REM The EraseDot Routine

2700 LET X=B0:Y=140

2800 WHILE X<=160

2900 ERASEDOT X,Y

3000 LET X=X+5

3100 WEND

3200 END

This program differs from programs for the other figures in order to
put five pixels between the dots. Without these spaces, you cannot
tell the difference between similar statements for DOT and LINE.

Graphics Statements 10-19

INVERTL INE

INVERTLINE draws a line of a "color" opposite that of its
background.

FORMAT

INVERTLINE startFPoint (x,y) endPoint (x,y)

NOTES

INVERTLINE needs four arguments -- the horizontal and vertical
points for the start of the line and the horizontal and vertical
points for the end of the line.

The inversion here amounts to turning off bits that are on and
turning on bits that are off. As a result, INVERTLINE describes a
light line on a dark background and a dark line against a light
background.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWLINE 100, 40, 150, 60

1200 LOCATE 10, &0: PRINT "Drawline”
1300 INVERTLINE 100, 100, 150, 100

1400 LOCATE 10, 100: PRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

10-20 GR1DBASIC Reference Manual

MOVEROX

NOTES

EXAMPLE

This statement copies an existing box to a second set of
coordinates.

MOVEBOX toplLeft (x,y) extent (x,y) destination topLeft (x,y)

MOVEBOX copies, but does not erase, an existing box. If you need to
give the illusion of movement you must follow your MOVEBOX statement
with an ERASEBOX statement (the erase coordinates should be those of
the original box).

1000 LET A=100: B=80: C=80: D=80
1100 DrawBox A,B,C,D

1200 FOR Pause=1 TO 200: NEXT Pause
1300 MoveBox A,B,C,D,200,80

1400 EraseBox A,B,C,D

1500 END

Graphics Statements 10-21

STACKMSG

FORMAT

NOTES

EXAMPLE

10-22

This statement places a message in inverse video at the bottom of
the screen.

STACKMSG "PromptString"
[STACKMSG "PromptString"]

STACKMSG takes only one parameter —— the string character that
constitutes the prompt message. If you have a second STACKMSG
statement, the message area will expand to hold both messages.
NOTE: When writing two messages, place the first message second.
For example, the messages in

1000 STACKMSG "Press ESC to exit"
1100 STACKMSG "The StackMsg Program”

appear in reverse vertical order:

The StackMsg Frogram
Press ESC to exit

STACKMSG messages remain on the screen for a split second. To make
them stay longer, you can follow the STACKMSG statement with some
kind of loop. The most common loop displays the prompt until
someone presses a key. The message then disappears as program
execution continues. NOTE: Do not include a STACKMSG prompt inside
a loop unless you follow it immediately with a CLEARMSG statement.
Otherwise, the prompt area scrolls up the screen. Adding a third
and/or fourth message without CLEARMSG also causes scrolling. See
CLEARMSG earlier in this chapter for details.

1000 STACKMSG "FPress ESC to exit"

1100 STACKMSG "The StackMsg Program"

1200 LET Key$=INKEY$

1300 IF Key$ <> "" THEN PRINT Key$: " gets me out of the loop" ELSE
GOTO 1200

1400 END

In this example, lines 1000 and 1100 set up a two-line prompt.

Lines 1200 and 1300 create an INKEY$ loop that waits for a key press
to occur. When someone presses a key, line 1300 prints the key’s
character.

GRiDBASIC Reference Manual

' The StackMsg Progoram
Press ESC +o mxit

Figure 10-11. A STACKMSG Frompt Line

Graphics Statements 10=23

APPENDIX A: ERROR MESSAGES

GRiDBASIC error messages

Array is too large
What happened

What to do

are listed here in alphabetical order.

You tried to put over 65,535 bytes into an array.

Redimension the array so that its size falls within
legal limits.

Array reference is out of range

What happened

What to do

Attempt to read past end

What happened

What to do

You probably have a subscript of 0; you dimensioned
an array with a variable and still haven’t assigned a
number to that variable. O0Or, you have assigned a
number greater than the subscript allows.

Check your subscripts, especially those that are

variables. Remember: You can only have ten items in
an array without dimensioning.

of file
An INPUT# statement is executed after all the data in
a file has already been input, or the file is a null

(empty) file.

Flace the EOF function in your program to detect end

GRiDBASIC Reference Manual A-1

of file and aveoid this error.

ELSE encountered without matching IF

A 4
What happened You programmed an IF THEN ELSE, but managed to leave
out the IF.
What to do Put in the‘IF statement.
Empty line
What happened This is a system-level error.
What to do Nothing. You won’t see this error.
Expression error
What happened This is a system-level error.
What to do Nothing. You won’t see this error.
File already open
What happened This run-time error occurs when you try to reopen a
file you’ve already opened.
\ 4

What to do Check to see what file is open and its tag number.
Also, is it a random access file? Sometimes you try
to open a different file, but give a tag that is
already in use.

You can either write a CLOSE statement for the file
or (if the tag is the problem) give the correct
number. If the file is random access, make sure you
haven’t tried to read or write to it as you would
with a sequential file.

File is not open for random access.

What happened This run-time error indicates you’ve tried to read
from or write to a file (with GET or PUT), but vyou
haven’t opened it as a random access file.

What to do Check to see if you’ve opened the file. If you have,
check the file tag number and the number you’ve used
with the your access command. Also, did you assign
the file the "R" (for "random") mode? And remember:

A-2 Error Messages

Random access files require a FIELD statement to
allot buffer space.
File not open

What happened This run-time error indicates vou’ve tried to read
from or write to a file you haven’t opened.

What to do Check to see if you’ve opened the file. If you have,
check the file tag number and the number vou’ve used
with the your access command.

FOR encountered without matching NEXT

What happened You began a FOR NEXT loop, but failed to complete it
with a NEXT statement.

What to do Locate the place where the loop should end and put in
the NEXT statement with appropriate variable. Or
erase the FOR TO [STEF] if you no lonager want the
loop in your program.

Generation error

What happened This is a system-level error.

What to do Nothing. You won’t see this error.

Il1legal character
What happened This error message is reserved for later use.

What to do Mothing. It won’t happen.

Illegal value

What happened A number that is either too large or too small causes
this at the system level.

What to do Nothing. You won’t see this error.

Improper expression
What happened This is a system—level error.

What to do Mothing. You won’t see this error.

GR1DBASIC Reference Manual A-3

Improper function call

What happened

What to do

Improper loop nesting

What happened

What to do

This message covers a multitude of sins -- from usin
non-existent or unimplemented functions. -

Check to see that your program contains only current
functions. Are their names correctly spelled? If
everything looks okay, try re-running the program.
If that fails, reboot the system and then re-run the
program.

You written an inner loop and an outer loop so that
they overlap. A run-time error.

Untangle the offending loops so that no overlapping
takes place. See FOR NEXT and WHILE WEND for
details.

Improper paraseter in function call

What happened

What to do

Improper syntax

What happened

What to do

Invalid variable

What happened

What to do

A-4 Error Messages

This run-time error usually indicates an improper
number of parameters or parentheses.

Check to see that you gave the correct number of
paramenters and parentheses to the function. O

This is the catch-all phrase for any syntax problem.
It occurs while programming, when you press RETURN,
CODE-RETURN, or either vertical arrow key.

Check the syntax of all statements and functions on
the current line and confirm the line again to see if
the error remains.

The interpreter has encountered either a variable
with an illegal character in it (see Chapter Two) or
the name of a file the system can’t find.

Check the variables on the current line. If you are
making a file reference, make sure that it is on the

<

Mismatched quotes

What happened

What to do

device, under the subject. and of the kind you have
named.

This error occurs while vou’re programming and
indicates you don’t have the proper number of quotes
on the current line.

Check quotation marks (") to make sure you have the
correct number. NOTE: Don’t try to put double quotes
within double quotes. You can, however, put single
quotes (7) within double guotes.

Missing parameter in array reference

What happened

What to do

During programming, you have omitted one of the
dimensions that you declared when dimensioning (DIM)
the array.

Find the erring array and insert the missing
parameter.

Missing parameter in function reference

What happened

What to do

NEXT encountered without

What happened

What teo do

While programming, you have omitted a required
parameter from a function.

Find the function and determine which parameter is
missing. Then insert the parameter.

matching FOR

You have failed to include the upper portion of the
FOR MEXT loop —— FOR TO [STEF1. Or vou have given
the wrong variable after NEXT.

Fut the FOR TO [STEF] portion of the loop at its
proper place in your program. Or, if the wrong
variable follows NEXT, correct i1t. Or, 1f the NEXT
is an unwanted leftover, erase it.

Number of array dimensions disagrees with definition

What happened

You have given an array the wrong number of
dimensions. This message can occur while programming
or at run-time.

GR1DBASIC Reference Manual AR-5

What to do

Not implesented

What happened

What to do

Check any array(s) in the current line and determine
which has an improper number of dimensions.

You have used a word that GRiDBASIC has reserved for
later use, but which does not yet work as a
statement, function, or constant.

Figure out some other way to accomplish the purpose
achieved by the unimplemented word.

Number of parameters disagrees with definition

What happened

What to do

Out of memory

What happened

What to do

Ran out of data
What happened

What to do

You have given an array or a function the wrong
number of parameters. This message can occur while
programming or at run-time.

Check any array(s) or functions in the current line
and determine which has an improper number of
parameters.

You dimensioned an array so that it takes more memory
than the system offers.

Redimension the offending array.

A READ statement read all the available DATA items.

Add more data. Or put in a counter that causes the
program to stop reading before exhausting the items
in the data statement. Or put in a RESTORE statement
to cause the data to be reread.

RETURN encountered outside subroutine

What happened

What to do

A-6 Error Messages

You have a RETURN statement that lacks a preceding
matching GOSUB statement.

Either write the appropriate GOSUB statement or erase
the RETURN.

O

Statement witr syntax errors encountered

What happened

What to do

Type mismatch

What happened

What to do

Undefined line number

What happened

What to do

Variable expected here

What happened

What to do

WEND encountered without
What happened

What to do

This message repeats at run-time what you saw as
"Improper syntax" while proagramming. This means that
you didn’t correct the error.

Check the syntax of all statements and functions on
the current line and confirm the line again to see 1f
the error remains.

Every variable and most operations expect a
particular "tvpe" of data -- string, numeric, or
Boolean. Giving a foreign datum toc a variable or
operation causes this error. For example, giving a
string to a numeric operator or variable.

Find the offending datum (or its source!. Then

change either the datum or the receiving statment so
that a type match occurs.

You have placed a line number in a statement {(such as
GOTO or GOSUE) for which no matching line exists.

Change the line number to point to the proper line.
Or erase the pointer statement.

You type a statement requiring a varialbe (such as
INPUT) while programming, but didn’t include its
variable.

Find the statement and enter the variableis).

matching WHILE
A WHILE WEND loop lacks its WHILE statement.

Either insert the WHILE statement with 1ts condition
or erase WEND statement.

GR1DBASIC Reference Manual A=

WHILE encountered without watching WEND
What happened A WHILE WEND loop lacks its WEND statement.

What to do Either insert the WEND statement with its condition
or erase WHILE statement.

A-8 Error Messages

APPENDIX B: ASCII CHARACTERS

This appendix contains the ASCII (American Standard Code for Information
Interchange) character codes. Programmers use these codes in everything from
string handling functions (see Chapter Six) to communications work.

GRiDBASIC Reference Manual B-1

DEC HEX GRPH ABBR NAME PRESS
o0 oo " NUL null CTRL-SHIFT=-2
a1 01 % SOH start of heading CTRL-A
8z ez § STH start of text CTRL-E
ez a3 £ ETX end of text CTRL-C
04 04 £ EOT erd of transmission CTRL-D
25 (% 1] & ENG enquiry CTRL-E
B ac L ACK acknowl edge CTRL-F
a7 ar 'y BEL bell CTRL-G
(L1 (5 1] L3 BS backspace CTRL-H
as 83 [HT horizontal tab CTRL-I, TaB
18 vA 4 LF linefead CTRL-J
11 2B % T vertical tab CTRL-K
12 oc fr FF form feed CTRL-L
13 80 %) CR carriage return CTRL=-M
14 BE % <0 shift out CTRL-N
15 aF 5 SI shift in CTRL-0O
16 i@ g DLE data link escape CTRL-P
17 11 4 DC1 device control 1(XON)| CTRL-B
1& 12 & DC2 davice control 2 CTRL-F
19 13 [N DC3 device control 3(XOFF) CTRL-S
20 14 & DC4 device control 4 CTRL-T
21 15) NAE negative ack CTRL=-U
22 1€ L SYN synchronous idle CTRL-U
23 17 & ETE end trans. block CTRL-MW
24 15 1 CAN cancel CTRL=-X
25 12 & EM end medium CTRL=Y
2¢€ 1A % sue substitute CTRL=-2

7 1B k ESC escape CTRL-;
25 10 Fy FS file separator CTRL-SHIFT-,
29 10 2 GS aroup separator CTRL-=
38 1E re RS record separator CTRL=-SHIFT-.
31 1F % us unit separator CTRL-SHIFT-hyphen
3z 28 SP space
33 21 ! exclamation
34 22 " quotation marks
35 23 # number sign
3& 24 E dollar sign
a7 25 % percent sien
38 26 2 ampersand
32 i : apostrophe
48 25 C opening parenthesis
41 29) closing parenthesis
42 2A b 4 asterisk
43 2B + plus
e b{m ’ comma
45 20 - huphen
4 2E : period
47 cF /s slash
4 20 5]
49 21 1
50 32 2
51 33 3
Sz 24 4
52 35 5
54 36 [
- -] 37 7
Se 35 g
57 39 9

1] 3A : colon

59 3B i semicolon

€0 2C < less than

el 3D = equal to

2 3E > greater than

63 3IF 7

€4 40 @ commarical at sion

B-2 ASCII Characters

DEC HEX GRPH ABBR NAME PRESS
&S 41 A
6€E 42 E
67 43 [
€ 44 D
(3= 45 E
7 45 F
i 47 G
72 42 H
e 42 I
74 4R J
Fit 4B K
TE 4 L
rd 40 M
75 4E N
Fi-) 4F 0
8a sa P
21 S1 e
=3 D2 3
83 53 S
24 5S4 T
g5 55 u
2% 55 L
? 7 W
22 58 4
29 53 Y
S SH Z _
91 SE C openina bracket CoOE-,
32 SC N backslash CODE-SHIFT-.,
93 S0] closing bracket CODE-
9S4 SE A circumflex
=) SF _ underline
S€ [=15] b back quote CODE-"
a7 &1 a
as €2 b
99 €3 c
180 €4 d
191 €5 e
18z (X3 f
192 €7 Q
194 €8 Iy
185 69 i
186 &R J
187 &k ke
188 6C 1
192 aD M
119 EE n
111 6F [}
112 790 [
113 71 q
14 = r
15 73 s
15 74 t
17 Fi=) u
12 7€ L
119 i W
128 s x
121 79 d
122 rd) z
123 7B L 4 left curly bracket CODE-SHIFT~,
124 C | vertical line CODE-SHIFT-;
2 70 h rigoht curly bracket CODE-SHIFT-.
26 7E ~ tilde CODE-;
2v r B DEL dJelete CODE-SHIFT-haphen

GR1DBASIC Reference Manual B=3

INDEX

A (Append) B-14

ABS 5-3

Access mode B-14

ACOS S-4

AND 2-8| 5"5

Append access mode B-14
Arrays 2-7, 3-2

AS 9-5

ASC 6-2

ASCII characters &-2, B-1 +f
ASIN 5-6

ATN 5-7

Automatic line numbering 1-6

b0 B-1
Boolean Constants 5-13, 5-33
Buffer (RAM) 9-1, 9-5, 9-11

CDBL 5-8
CHRS 6-3
CINT 5-2, 5-9
CLEARMSG 10-4
CLOSE B-3
CODE-? 1-6
CODE-C 1-3
CODE-E 1-3
CODE-R 1-3
CoMMA 7-2, 7-6, 7-7, 7-10
Communications files B-10
Concatenation 2-11, 7-2, 7-11, 8-11
Constants 2-4
Boolean 5-13, 5-33
Numeric 2-5
String 2-4
Continuing a Program 1-3

GR1DBASIC Reference Manual

Convert 9-3

Convert to double precision 5-8
Convert to integer 5-9

Convert to single precision 5-11
CoOs 5-10

Cosine 5-10

CSNG 5-11

Cursor 1-5

CVD 9-3

cvl 9-3

cvs 9-3

DATA 3-4

DATES 7-4

Delimiters 2-13, 7-7
DIM 2-7, 3-2
DOMENU 10-5

DRAWBOX 10-6
DRAWCHARS 10-7
DRAWCIRCLE 10-9
DRAWDOT 10-10
DRAWLINE 10-11

e (exponential function) 5-12
ELSE 4-9

END 4-2, B-3

E notation 2-5

EOF B-4

EOLN B-5

Epson 7-2 f, B-18B
ERASEBOX 10-12
ERASECIRCLE 10-14
ERASEDOT 10-15
ERASELINE 10-1&
Erasing Line(s) 1-3

Index—1

Error messages A-1 ff.
ESCape key 1-3

EXP 5-12

Exponential S5-12
Expressions 2-7

f0 B8-1
FALSE 5-13
FIELD -5

Field variables 9-%9

File access mode B-14

File kinds 2-13

File naming conventions 2-12

file tag B-3
FIX $5-2, 514
FOR 4-3

FOR TO NEXT [STEP) 4-3

GET 9-6

GETFILES 2-12, B-7

GOSUB RETURN 4-6

GOTO 4-8

Greater than (>) 2-8

Greater than or equal to (>=) 2-8
BRiDBASIC environment 1-4
GRiDBASIC, Invoking 1-1
GRiDBASIC screen 1-4

Highlighting 1-5

I (Input) B-14

IF 4-9

IF THEN [ELSE] 4-9
INKEYS 7-5

INPUTH B-B

INPUTS 8-10

INPUT 7-6

Input access mode B-14
INSTR 6-4

INT 5-2, 5-15

Integer division 2-4, 2-8, 5-1&
Integer functions 5-2
Integers 2-6, 5-2
INVERTBOX 10-17
INVERTCIRCLE 10-18
INVERTDOT 10-19
INVERTLINE 10-20

Keybocard 7-3
KILL 8-11

LEFTS &-&

LEN &-7

Less than (<) 2-8

Less than or equal to ({=) 2-8

Index-2 GRiDBASIC Reference Manual

LET 3-4

Line number field 1-4

Lines and line numbering 1-é
Loc e-12, 9-7

LOCATE 7-9

LOF B-13, 9-8

LOG10 5-18

Logarithm 5-17, 5-18
Logical operators 2-8 f, 5-5, 5-20, 5-21, 5-35
LOG S5-17

LSET 9-9

Make string function 9-10
Manual line numbering 1-6
Menu 10-5
Message line 1-5, 10-4, 10-22
Messages 10-4, 10-22
MIDS &4-8
MKDS$ 9-10
MKI$ 9-10
MKS$ 9-10
MOD 2-8, 5-19
Mode
Access B8-14, 9-11
Direct 1-4
Indirect 1-2
Programming 1-2
MOVEBOX 10-21
Multiple statements 1-7

Nesting 4-4, 4-14

NEXT 4-3

NOT 2-8, 2-9, 5-20

Not equal to (<>) 2-B
Numeric constants 2-5
Numeric operators 2-7, 5-1

0 (Dutput) B-14

ON GOSUB 4-11

ON GOTOD 4-11

OPEN (Random files) 9-11

OPEN (Sequential files) B8-1, B-14
Operators 2-7

OrR 2-8, 5-21

Outline 1-4

Output access mode B-14

Padding digits 7-14

Pathname syntax 2-12, B-7

rl S5-22

pixel 7-9, 10-1

Precedence, Order of 2-7, 2-8
PRINT 8-17

PRINTH USING B-19

PRINT 7-10

Printer 7-2 ¢, B8-18

PRINT USING 7-12

Program editing screen 1-2, 1-5
Prompt 10-5, 10-22

PUT 9-13

R (Random) 9-1

Random access mode 9-1
RANDOMIZE 5-23

Random numbers 5-24 ¢4
READ 3-S5

READ DATA [RESTORE] 3-S5
Real-time clock 5-23, 7-4, 7-21
Reformatting listings 1-7
Relational operators 2-8
REM 3-9

Renumbering 1-6

Reserved words 2-3
RESTORE 3-6

RETURN 4-6&

RIGHTS &-9

RND 5-24

ROUND 5-2, 5-28

RSET 9-9

Running a program 1-3

Screen dimensions 9-1
Scrolling 1-2
SEMICOLON 7-6, 7-7, 7-10, 7-19
SGN 5-29

SHIFT-RETURN 1-B

SIN 5-30

SPACES 6-10

SER 5-31

STACKMSG 10-22
Statement field 1-4
STEP 4-3

STOP 4-13

Stopping a program 1-3
STR$ 6-11

STRINGS 6-12

String constants 2-4
String operators 2-11
Syntax diagrams 2-1

TAB 7-20

Tabbing 7-2, 7-10
TAN 5-32

THEN 4-%9

TIMES 7-21

T0 4-3

TRUE 5-33

TRUNC 5-2, 5-34

VAL &-13
Variables 2-6

w0 B8-1
WEND 4-14
WHILE 4-14

WHILE WEND 4-14
Worksheet example B-6

XOR 2-8, 5-35, 7-12

A NN E =

2-4,
2-4,
7-17
2-3,
2-4,
7-13
3-9

2-4,
2-4,

7-10

7-14, 8-3, B-14

2-6, 61
2-6, 7-15

2-B
2-8

118 7-17

~ 1+

e
'\JN?-JNI'J?‘IJNNNN
N bHODHDDODDOS D

o= a2 I AA A ue

GR1DBASIC Reference Manual

7-16
2-4,
2-4,
2-4,
2-4,

2-8, 51, 7-17

2-8, 2-11, 5-1, 7-1%5
2-7, 2-3, 5-1, 7-15

2_B| 5—1

7-2 £f, 7-14

1-7,

K -
-]
&1

w

2-4, 2-13
7-19
2-8

2-8
2-8

2-8, 5-1&,
2-12, 2-13

2-12, 2-13

7-13

Index -3

