GRiDBASIC REFERENCE MANUAL

March 9, 1983

Model Number 2Z1020-40

COPYRIGHT @ 1983 GRiD Systems Corporation

2535 Garcia Avenue)

Mountain View, CA 94043

(415) 961-4800 L

Manual Name : GRiDBASIC Reference Manual
Model Number 21020-40
Issue date: March 9, 1983

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise, without the prior written permission of
GRiD Systems Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR
IMPLIED WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMFLIED WARRANTIES OF
MERCHANTABILITY, QUALITY, OR FITNESS FOR A PARTICULAR FURFOSE. GRiD Systems
Corporation makes no representation as to the accuracy or adequacy of this
document. GRiD Systems Corporation has no obligation to update or keep
current the information contained in this document.

GRiD System Corporation’s software products are copyrighted by and shall
remain the property of GRiD Systems Corporation.

UNDER NO CIRCUMSTANCES WILL GRID SYSTEMS CORPORATION BE LIABELE FOR ANY LOSS OR
OTHER DAMAGES ARISING OUT OF THE USE OF THIS MANUAL. \h‘J

The following are trademarks of GRiD Systems Corporation: GRiD, NAVIGATOR,
COMFASS CENTRAL, COMFASS COMPUTER, and LEVERAGED LEARNING.

i1

TABLE OF CONTENTS

GRiDEASIC COMMAND SUMMARY . . & & & & & o o o o o = o =« « s = « = %

ABOUT THIS BODK . . « &« =« =« o o s o s s s s & s 5 s a s s = = X1

CHAFTER ONE: GETTING STARTED

WMhat IsBRIDBASIE . . &+ o o = & o o o % & « & @ = = @ &8 @ @ & @ /=
Invoking GRIDBASIC . s v o & = & » & @ 5 & = % @ % & & & @& & & =
The Programming (Indirect) Mode+« « + &+ « « &« . .
Running, Continuing, and Stopping a Frogram.
The ESCape KBy « w « » @ w o = & o @ o = @ = w & a & @ = @ ‘s
Eracing LInels) e « = » w m & & @ ® & & 0 @ & & & & % @ & & @
ther Commands = v s « w & & o o @ & & & @ @ @ @ 3 @ & @ % &
The: Direct Mode & i+ # 5 2 & 6 & ¥ @ & W @ & 9 & @ & & # @ % @& & %
About the GRiDBASIC Environment & & & & & o = « = = « « =«
Layout of the GRIiDEASIC Screen . . & & « & & & 2 « = « = & =
Lines and Line NUmbBring « « « « s « o & s« s # & % & 3 @ @« @& ‘&
Automatic Line Numbering . . « « « & & o & &« & & & « = & + 4
Manual Line Numbering . . . « « ¢ ¢ & 2 2 2 @« s a = s = & =
PenuUMOBring « o+ » o o & » o &0 @ @ » &8 # & @ = &« 2 » ® @ & =
Multiple Statements . v . & 2 o = @ & 3 @ @ @ 5 5 & @ @@ =
Reformatting your Listings « & « ¢« & & o + « &

| I |
NN BB DWW G R e

T T e e e e S e = = S =

CHAFTER TWO: GENERAL INFORMATION ABOUT GRiDBASIC

Syntax Diagrams . . . & « 4 4 4 4 4 4 bk e e e e
Reserved Words
Constants . . . & & v & & & v 4 & v & & <
String COnstEnts « o o & o 5 6 5 5 5 G 5 F 5 od 5 5w
Numeric Constants & 4 4 v & & o « o &
Variables . . & & 4 v 4 4 v 6 b e e e e e e e e e e e B
Array Variables T EE R EEEE R
Expressions and Operators R EE S R R RN R R
Order of Precedence and Numeric Operators. T R
Relational Operators . . & . & & & & 4 4 4 & o & o o = » = =
Logical OperatorsS. o o « &« o © 0 @ w 5 o o % @ & @ & & s
String Operatord.: « « o o & o o 5@ & # 8 9 & & & 5 % & %
File Naming ConventionS. & . « s & & @ s s & @ @ & & % @ % = & s .2-12
FIYE KiNOSs % 50 50 5 % % & 7 51 3 5 of 6w w o S oue 8 5 o e e
DElimit®r|. . o o o o @ o o @ o @ & o o 5 w0 @ w0 ow w e e P=LS

NNNMI\J’}JNNI‘JNM
e R R BN s I S N

L3
|
-
—

L]
1
—
(2]

CHAFTER THREE: ASSIGNMENT AND DEFINITION STATEMENTS

DIM o 5 w0 0 i 2 o w o 3 (8 8 5 % @ 8 % 5 % 5 ® 0w o8 # @ w = W 3-2
LET . « « « s s s = s s s s s s 8 3 s 8 s 8 s 3 e s s s s 34
READ DATA [RESTDRE] ® % s 8 & % & 8 ® 8 8 4 8 s s s = oa s s s s s 30
REM & & o s« 5 5 5 5 3 a5 @ 6 5 » % 5 & & % 5 & 5 s« 5 » & & s 5 =%

CHAPTER FOUR: STATEMENTS THAT CONTROL PROGRAM FLOW

END ® s 4 s e s 8w e s s e s s s s s e s e s
FOR TO NEXT [STEP] s s s & & & @ a o w s 4 4w e e om mow ow oW m s a
GOSUB RETURN . &« .« « o o « s o s o o o s &« s & « a & s o« = &« =
GOTO & « « & P % e s e s s 8 e 8 & 8 s & & & @ % &8 @

IF THEN [ELSE] PR W m e s R ms s oW E e W s e

ON GOTO and ON BOSUB . = ¢« ¢ ¢ o o o & s o a = 2 & s s @ = & @
STOP @ & o o o @ 2 o o & = = & # % @ @ & 2 o @ @ &« s «a « ® = ®
WHILE WEND . & ¢ & & « o o ¢ s ¢ o & s o & =

PLeis
Bl = 0o WM

[

-h-?-b
el

I

CHAPTER FIVE: ARITHMETIC AND LOGIC

INTEGER FUNETIDNS % s = % & 5 3 @ & & & 3 & % & @ & #» ® 575 (B & &
ARG (AbSOLULE! . 5 & o @ & § = % 6 ok s B oW W e R E W
ACOS (Arc cosine)

Lﬂ!..lﬂ(_ﬂ
BN

iv

AND 5 5 & & 25 & & s @ & © &
ASIN (Arc sine) . « « « =« + =
ATN (Arctangent)
CDBL (Convert to double) . .
CINT (Convert to integer) . .
COS: (Cosin®) = % 5 5 # « @ W
CSNG (Convert to single) . .
EXP (Exponential)
FALSE . « ¢ ¢« s 5 s & o = &
FIX & s« s s e & & » & & @ =
INT (Integer) « . .
Integer Division (\)
LOG (Logarithm) « «
LOG10 (Log to base 1Q) . . .
MDY = s 5 5o o W R
NOT . « o = 2 & o » 0 = o e
Bl e @ o e e w e W e
PT 6 6 4 ® 9 & B 15 8 ¥ & @ 03
RANDOMIZE . . « « &+ « o « &«
RMD {(Random)
ROUND . . o o ¢« o o 2 o = =
SBN (51an) « « = s » a o = =
SIN (Bine) = & & & ¢« u % & =
SER (Square root)
TAN (Tangent) « « .
TRUE ¢ v o o o @ ¢ w = o = =
TRUNC (Truncate)
XOR (Exclusive OR)

CHAFTER SIX: STRING FUNCTIONS

ASE (ASCIIY 5 = % 5 % = & = @&
CHR$ (Character string) . . .
INSTR (In string)
LEFT$ (Left string)
LEN (Length) o« « « o« o o o
MID$ (Mid string)
RIGHT$ (Right string)
SPACE$ (Space string) . . .
STR$¢ (S-T-R string)
STRING$% (S5tring)
VAL (Value) . . « . + « & &

oo 0 0

I I 1 o~o~0C 0O DO O O
bt et b = |)]
AN = O 0 OND> & WRN

CHAFTER SEVEN: INPUT/OUTPUT STATEMENTS

COMMA = « o » o« o « « & 7=
DATES 2 o « « o « & = 7o s & s s 5 i . e ¢ o 2 @ . 7-4
INKEYS o o w o v o 0 @ 5 3 % & & 4 @'% ® & &8 2 8 @ 6d & @ @& 1=9
INPUT 5 6 5 & 5 6 @ @ & » @ 7-6
LOCATE =< & & & o o =
PRINT . & ¢ o o w
PRINT USING
SEMICOLON
TAB 5 5 o & s & & % % & = o @ o s .
TIMES . » v o 0w w3 20 o € S & wmww » @ @www o5 @ w 7980

CHAPTER EIGHT: SEQUENTIAL FILES STATEMENTS

CLOSE s » & 9@ 2 & & 0 & & ® 4 3 & @ 8-3
EOQF KEndiof Fild) 5 & i # 5 o v @ o « = . . . B-4
EOLN. (End of 1ine) . = o « = ' o o w o «w @ a o @ « s & o & % « B9
BETEILE® . o o & = « 2 o & & » » B8-7
INPUTH . o o o 5 s 5 o o a6 5 8 a 3 o ' . . . 8-8
INPUTS = 5 o a1 5 @ % & sl % & & i ¥ Z o ume @ d o uesaw B-10
KILL o ¢ o & o o o o a o a o @« o 11
LOC (Locating) . « « & o ¢ o « &
LOF (Length of fil@) .o « « o ¢ s s o o s s ¢« o s o s a s « s » « B8-13
OPEN o & & & o o o o s o o o 5 8 8 a a s &« 2 »
PRINTR i 5 3 5 6 & o 3 o @ w & 5 e o & » o = . " e .
PRINTD USING 4 & « o o o w s w8 v o & 54 @ w o om s » oo« u @=19

CHAPTER NINE: RANDOM FILE STATEMENTS

CVI,CVS,CVD (Convert) . . = = ¢ « « &« 5 s a » « s s s « s « s o @
FIEED = » s G 9 @ 5 & & % 9 8 3 & 0 @ & % & B
B S R E R A R D e AR DR
LOE (ocating) .« « o @ oo o o @ w @ o 8 & w @ e e ¥ .
LOF (Length of T118) & = s « o a = @ o o o = =« @ & = =
LSET and RSET w s w = & 8 5 o o = & & & & o & &
MKIS MKS$,MKD$ (Make string) . « « ¢« ¢« ¢ ¢« o o s o &«
OFEN = s = 6 % & % & = %
POE =13 o 8 2 B BB

-
I-O~O~ID-O~0~{]
o0 m~NOC W

I

-lﬂ-0
—
—

0
I
-
2

vi

CHAPTER TEN: GRAPHICS STATEMENTS

CLEARMSG + + & o o o « & = « o« & &

DOMENU . o & & & & o « o & o o o &
DRAWBOX . = . « « & o ¢ & & o & &
DRAWCHARS « « « « « &
DRAMCIRCLE . . o o« « = o = o 2 «
DRAWDOT « o o ¢ ¢« o =« « s &« a = =
DRAWLINE « « & o & & « &
ERASEBOX . . « ¢ o « o« = s o o &«
ERASECIRCLE . « + =« o o o o o & &
ERASEDOT . . & « & &« o o & o &« &
ERASELINE « &« « ¢ s s « &

INVERTBOX . . ¢« ¢« & o« o« & o a & &
INVERTCIRCLE . « &« « o« & & & &

INVERTDOT & « o o o = » =« » ¢ » »
INVERTLINE . . & « &« & & & & & &
MOVEBOX - « « = = a o &« o » o = =
STACKMSE . . . « « =&

AFPFPENDICES

AFFENDIX A: ERROR MESSAGES

APPENDIX B: ASCII CHARACTERS

INDEX

10-4

10-5

10-6

10-7

10-9
10-10
10-11
10-12
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10~21
10-22

LIST OF FIGURES

Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

viii

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

10—10.
10-11.

The Initial Program Editing Screen . . .
The Program Editor Screen . . . -
Line 1300 after Inserting SHIFT—RETURNs .

Example of a Type Mismatch Failure . . .
Example of Faulty Logic « « « . &
ANorking Logle . « « w o & @ ® s 5 w =
Another Working Logic . . . « « « &+ & &« =

Results of a Simple READ DATA Program . .
Results of a READ with Two Variables . .

Three Types of Random Numbers
A Program and Series of Random Numbers .
Output of RND on Three Numeric Ranges .

Examples of Comma Formatting
The Input Statement Illustrated
How Format Characters Pad Digits
Basic formatting PRINT USING
The PRINT USING Format with Signs
Asterisk and Dollar Formatting

Worksheet Figures for Example Program . .
PRINT# USING Formatting of Random Numbers

The Three Circle Graphics
The Three Dot Graphics . . + « + « & o« &
The Three Line Graphics . . . « « « « .« .
Before CLEARMSG « . « « o s o« = a & 2 »
After CLEARMSG v s e 8 os e s
A Menu Created with DUMENU F N
An Example of DRAWBDX« « .« .
The DRAWCHARS Example . s s 4 s & & s
An Example of ERASEBOX « « « + «
An Example of INVERTEOX
A STACKMSG Prompt Line « . .

8-20

10-2
10-2
10-3
10-4
10-4
10-5
10-6
10-8
10-13
10-17

10-23

LIST OF TABLES

Table 2-1. GRiDBASIC Reserved Words . . . « + « & =« & « « = =« « 2-4

Table S5-1. A Table of Integer Functions« . . . « . 52
Table S-2. The AND Truth Table « « « « s « & s o« s 5 s = o« » s s 95
Table 5-3. The NOT Truth Table « « + & & & &« & i &+ ©=20
Table 5-4 The OR Truth Table . . -« « « & o ¢ o = ® & 2 & = « « 9O21
Table 5-5. A Table of Ranges and Functions 35-26
Table 5-6 The XOR Truth Table o « = w o o o o 5 8 &« & » @ @ & D00

Table 9-1. Choosing MK$ and CV Functions - +« .« « . . 9-5

BRi1DBASIC COMMAND REFERENCE

ABS

ACOS

AND

AS

ASC

ASIN

ATN

CDBL

CHRs

CINT
CLEARMSG
CLOSE

COMMA

cos

CSNG

CvD, CVI, Cvs
DATA

DATES

DIm

DOMENU
DRAWBOX
DRAWCHARS
DRAWCIRCLE
DRAWDOT
DRAWL INE
ELSE

END

EOF

EOLN
ERASEROX
ERASECIRCLE
ERASEDOT
ERASEL INE
EXP

FALSE

FIELD

FIX

FOR TO [STEP] NEXT
BET
GETFILES
GOSUB RETURN
G60TO

IF THEN [ELSE]
INKEYS
INPUT
INPUTH#
INPUTS
INSTR

INT
INVERTBOX
INVERTCIRCLE
INVERTDOT

5-3
5-4
5-3
9-3
6-2
S5-6
5-7

6=3
5-9
10-4
B8-3
7-2
5-10
S5-11
9-3
3~
7-4
3-2
10-5
10-6
10-7
10-9
10-10
10-11
4-9
4-2
B8-4
B-5
10-12
10-14
10-15
10-16
5-11
5-13
9-5
5-14
4-3
9-8
8-7
4-4
4-8
4-9
7-5
7-b
B-8
B-10

5-15
10-17
10-18
10-19

INVERTLINE 10-20
KILL 8-11
LEFTS b-6
LEN &-7
LET 3-4
Loc 8-12, 9-7
LOCATE 7=9
LOF 8-13, 9-8
LOG 5-17
LOG10 S5-18
LSET <9
MIDs &6-8
MKDS$, MKIS, MKSS 9-10
MOD 2-8
MOVEBOX 10-21
NEXT 4-3
NOT 5-20
ON GOSUB 4-11
ON GOTO 4-11
OPEN 8-14, 9-11
OR 5-21
PI 9-22
PRINT 7-10
PRINT USING 7-12
PRINT# 8-17
PRINT#® USING B8-19
PUT 9-13
RANDOMI ZE 5-23
READ DATA [RESTORE] 3-5
REM 3-9
RESTORE 3-6
RIGHTS 6-9
RND 5-24
ROUND S5-28
RSET 9=8
SEMICOLON 7-19
SBN 3-23
SIN 5-30
SPACES 6-10
S@Rr 5-31
STACKMSE 10-22
STEP 4-3
STOP 4-15
STR$ 6-11
STRINGS 6-12
TAB 7-20
TAN 5-23
THEN 4-9
TIMES 7-21
TRUNC 5-34
VAL 6-13
WHILE WEND 4-14

+ - mm "R E =X

- A PP LAVVANL A =N |

2

-

N

7-13

2-12
2-12
10-5

ABOUT THIS BOOK

This reference manual introduces the GRiDBASIC programming environment,
including how to enter, run, and edit programs. It also covers the elements
of syntax. Beyond that, the manual classifies and discusses each command 1n
GRiDBASIC. Each disucssion includes a brief, example program. We invite you
to enter any that interest you and modify them as you wish.

Besides the Table of Contents., this manual includes an alphabetic Command
Summary (following the Table of Contents) and an index.

NOTE: This is a reference manual, not a tutorial. If you have never
programmed in the BASIC language, you would do well to find a book that
teaches BASIC programming and/or take a class in BASIC.

CHAPTER 1:

INTRODUCTION

This chapter introduces GRiDBASIC and its programming environment. It also
touches on the following subjects:

e How to

invoke GRiDBASIC and use its commands for writing, running, and

listing programs

e The GR1

e The GRi

DBASIC direct mode

DBASIC editor and editing screen

@ Lines and line numbering

WHAT IS GRiDBASIC?

GRiDBASIC meets and exceeds the requirements of the American
National Standard for Minimal BASIC as described in document ANSI
X3.60-1978. However, GRiDBASIC is much more than a "minimal"
version —— it is compatible with full-featured industry standard
versions of BASIC.

INVOKING GRiDBASIC

You can invoke GRiDBASIC in the same way that you invoke GRiD
applications. For example, you could select a file of the
appropriate kind, i.e., Basic. GRiDBASIC supports two modes: the
programming or indirect mode and the direct mode. We will treat the
programming mode first.

Introduction 1-1

THE PROGRAMMING (INDIRECT) MODE

Once you have invoked GRiDBASIC, the program editing screen appears. \")
Figure 1.1 below shows the editor screen ready for input in its

initial form -- with no program listing. When you have the program

editor on the screen, type your program.

1800 [_]

Figure 1-1. The Initial Program Editing Screen

The term "editor" refers to that portion of the GRiDBASIC software
through which you type, modify, and list programs. Fressing RETURN
at the end of each line generates a new line number and a new line. W/

When you write statements with line numbers, the computer waits for
a CODE-R command before executing the program. We call this the
"indirect mode," because statements don’t execute directly when you
complete a line. They wait in RAM memory, before, during, and after
execution.

As with other GRiD applications, you press arrow keys to move within
and between fields. Whenever you exceed the screen’s depth (either
by typing statements or by pressing a vertical arrow key), the
displayed material "scrolls,"” letting you see previously undisplayed
material.

After writing or editing a line, be sure to press RETURN, DownArrow,
or CODE-RETURN before renumbering the listing or executing 1t. Any
of these actions moves your newly written code from the keyboard
buffer into RAM memory. Failure to take one of these three actions
can cause the loss of the line in question.

1-2 GRiDEBASIC Reference Manual

Running, Continuing, and Stopping a Program

NOTE: GRiDBASIC does not ask you to type a RUN, LIST, or NEW
command.

Press CODE-R to run {execute) the program you’ve typed. Whenever
you run a program or execute a statement, GRiDBASIC displays the
program®s output instead of the current listing. If you have a STOF
statement in your program, you can continue after the STOF line by
pressing CODE-C.

When program execution encounters a STOF or END statement (or when
you press ESC), you see the following message:

Program stopped at line nnnn

where nnnn 1s the statement’s line number.

The ESCape Key

You can stop program execution at any point by pressing ESC. Press
ESC once more and your listing comes back with the field outline
where it was when you pressed CODE-R. If a syntax error stops your
program, ESC returns you to your listing.

Erasing Line(s)

You can erase an entire line by placing the cursor on the line you
want to erase, pressing CODE-E, and then confirming. To erase more
than one line at a time, press the appropriate vertical arrow after
pressing CODE-E. You can select as many lines for erasure as you
want before confirming. If you start at the first line, press
CODE-E, and follow it with CODE-SHIFT-DownArrow and CODE-RETURN, you
erase the entire program.

Other Commands
Like GRiD applications, GRiDBASIC also has CODE-? to see and/or
execute available commands (including Renumber), CODE-@ to CQuit,

CODE-T to Transfer and print files, CODE-U to see memory usage, and
CODE-ESC to exit without saving the current file.

Introduction 1-3

THE DIRECT MODE

ABOUT THE

Layout of

The "direct mode" has no line numbers. When you confirm the line
(CODE-RETURN), it executes and disappears from the computer’s
memory. People find the direct mode useful for quick computations
and for debugging small segments of code. NOTE: All GRiDBASIC
commands, except the looping commands (see Chapter Four), work in
the direct mode.

To enter the direct mode, press DownArrow from the last statement
field in the program. This creates a statement field with no number
field. (Fields are discussed later in this chapter.) Enter the
material you want to execute. For example,

FRINT S5+3

Press CODE-RETURN, RETURN, or DownArrow. NOTE: The material you
entered disappears and the answer appears. To continue in direct
mode, press ESC or DownArrow. The statement outline reappears. To
return to the indirect mode and generate a line number, press
RETURN. To position the cursor within the current listing, press
UpArrow until the cursor reaches the desired line.

GRiDBASIC ENVIRONMENT

This section gives details of the editing screen and discusses lines
and line numbering.

the GRiDBASIC Screen

Figure 1-2 below shows the GRiDBASIC editor in the midst of working
on a program. As you can see, the narrow column on the left
displays program line numbers. We call it the "line number field."
The wide column to the right displays program statements -- the
actual "text" of the BASIC program. We refer to it as the
"statement field." You can move within each field, and from one
field to the other. A description of each element in the editor
screen follows:

Statement Field The field of the program editor screen where
you enter and edit program statements. The
statement field displays the "text" of your
BASIC program.

Line Number Field The field of the program editor screen where
program line numbers are displayed. GRiDBASIC
generates line numbers automatically. You

1-4 GRiDBASIC Reference Manual

The Outline

Cursor

Highlighting

Message line

field 0utline-\

also can enter and edit line numbers manually.
See the section below on "Lines and Line
Numbering. "

A rectangular outline surrounds the current
statement or line number field. When you
first begin editing & program, the outline
surrounds the statement field, indicating that
you can enter or edit the text that composes
your program.

The blinking triangle within the outline. Its
position indicates where your next keystroke
will appear.

A form of display that causes text on the
screen to show as dark-on-light when the other
text is light-on-dark. (Also called "inverse
video.")

The highlighted line displayed at the bottom
of the screen. Your system prints command and
error messages here.

Line number Statement

field field
f*‘F,;)
-~ —A ~

1868 REM This program rolls a pair of dice

1166 PRINT: INPUT “Hou manu throws"; Count: FRINT
12688 PRINT "DIE #1 DIE# 2

1389 [FOR V=T TO Count: FOR %=1 10 = LT Throw=
TRUMCCEXRNDC 1 241 3¢ PRINT Throw, : NEXT X:

Cursor mm———

Highlighting -——————-"‘—~.\\¥
Message line ___——j

Figure 1-2.

PRINT: NEXT Y.
1406 GOTO 11066
15866 END

Quit: Confirm o save and exit

The Frogram Editor Screen

Introduction i=5

LINES AND LINE NUMBERING

Multiple statements and/or physical lines can follow any line
number. Only the size of the screen limits the length of a line.
When you type a line that exceeds the width of the statement field,
the line breaks at the space character nearest to the end of the

field and "text wraparound" automatically moves the next word onto
the next line.

Any number from 1 to 64,000 constitutes a legal line number.
GRiDBASIC supports automatic line numbering, manual line numbering,

and renumbering. It also lets you reformat lines for enhanced
readability.

Automatic Line Numbering

Automatic line numbering begins with line 1000. Each time you press
RETURN, GRIDBASIC issues another line number. If you are not
inserting a line between two existing lines, increments are by 100.

When you insert a line, the editor first tries to simply increment
by 100. For example, a line inserted between 100 and 1000 receives
the number 200. Increments become smaller as the difference between
the two current line numbers shrinks. When the difference between
the two line numbers is less than 100, GRiDEBASIC next tries to
increment by 10. The three remaining increments are by S
(difference less than 10), 2 (difference less than 5), and 1
(difference of 2 or less).

Manual Line Numbering

To enter your own line numbers, position your cursor on the last
display line of the program or on the last line number field. Press
DownArrow. This causes a new statment field to emerge. Press
LeftArrow to create a new line number field, then type the desired
line number. Pressing RightArrow moves the cursor back into the
statement field.

Renumbering

1-6

GRiDBASIC has a command that renumbers your line numbers so that
they suit the current automatic numbering formula. To renumber,
press CODE-? and select the Renumber option. In a moment, the
command puts all statements into GRiDBASIC’s default form -- with
1000 as the first line number and increments of 100 between all line
numbers. This command also renumbers in the statement area so that
numbers that point to lines (GOTO 2710) adjust correctly to the new
line numbers.

GRiDBASIC Reference Manual

™

Multiple Statements

You can put as many statements as the screen permits after a line
number. However, vou must place a colon (:) between each statement
on the lirne. For example, you could put thesze three statements

1000 FOR X=1 TO S
1100 PRINT X
1200 NEXT X

on one line:

1000 FOR X=1 TO S: PRINT X: NEXT X

NOTE: Statementes placed after a REM statement (See Chapter 3) do not
execute.

Reformatting Your Listings

You can manually reformat your program listings in such a way as to
add to the current number of display lines within a given program
line. FPress SHIFT-RETURN at that point in a program line where you
want to begin a new display line.

The outline expands by one display line with the cursor positioned
at the beginning of that new blank line. The program editor won’t
generate a new line number. Figure 1-3 breaks out the seven
statements in line 1200 by inserting SHIFT-RETURNs after each the
each statement. Compare it to Figure 1-2.

Introduction 1-7

1-8

1000 REM This program rolls a pair of dice

1100 PRINT: INPUT “How many throws"; Count: FRINT
1200 PRINT "DIE #1 DIE# 2"

1200

LET Throw=TRUNC(SXRNDC 141 >:
PRINT Throw, !
HEXT ®:

1400
1508 END

Figure 1-3. Line 1300 after Inserting SHIFT-RETURNs

To remove SHIFT-RETURN or other invisible characters, place the
cursor to the right of the offending character and press BACKSFACE.

You terminate multi-line statements just as you do single line
statements -- by pressing RETURN or either vertical arrow key. If
you press RETURN, the statement field outline will move to the next
line position and will return to i1ts single line size.

If you choose an arrow key, you will generate a single statement
field {(unless the next program line also occupies multilple display
lines). NOTE: If you press DownArrow from the last line of a
program, you will get a statement field with no line number.

GRiDBASIC Reference Manual

A4

CHAPTER 2:

GENERAL INFORMATION ABOUT GRiDBASIC

This chapter discusses concepts essential to programming:

Syntax diagrams

Reserved

words

Constants, variables, and arrays

Expressions and operators

File conventions

Delimiters

SYNTAX DIAGRAMS

This book describes each GRiDEASIC and function according to the
following conventions:

We write BASIC statments and functions ("reserved words" -- see
below) in all uppercase letters. For example, we render the
statement that causes text to appear on the screen as FRINT.
However, when you enter a statement or function, you can type
any combination of upper- and lowercase. All the following
iterations constitute legal forms of the PRINT statement:

FRINT print PriInt pRINT

General Information 2-1

-

s

Variable names begin with a capital letter. For example:

LET A$t=Name%

You must supply any item shown in lowercase characters. For
example, the GOTO command syntax

GOTO line#

means you must supply a line number. Failure to provide a
required parameter results in a syntax error or unexpected
program output. For example, GOTO 150, the legal form, tells the
program to jump execution to line 150,

The following usages are illegal:

GOTO
GOTO bed

The first fails to supply a line number:; the second supplies a
character string.

Items enclosed in square brackets ([]) are optional. The LET
command syntax looks like this:

[LET] variableName=expression

This means that in assigning a constant to a variable, you may
drop the "LET." Thus both

LET A=5
and
A=5

are correct and accomplish the same purpose within a program:
they store the constant 5 in variable A.

1f you have a choice between twoc items, the choices are separated
by a vertical slash (!) and surrounded by curly brackets ({3).
For example, the syntax diagram

FRINT [expressionl({,i;}]

means that you have the option (note square brackets) of putting
either a comma or semi-colon after an expression. Note that
though you have a choice between the items in the curly brackets,
you must supply one of them.

GRiDBASIC Reference Manual

® A trailing ellipsis (three dots -- ...) indicates continuation.
For example, in the DIM syntax statement,

DIM variableName{(subscripts)[, variableName(subscripts)]l...

the ellipsis at the end indicates that you can continue the
variableName(subscript) pattern as many times as you want.

@ A vertical ellipsis indicates that other statements may come
between the first and last items. For example, you may place
executable statements between FOR and NEXT.

FOR

NEXT

e When programming, you must include all punctuation -- commas,
parentheses, semicolons, colons, or equal signs, as shown (except
the syntax punctuation -- square brackets, curly brackets, and
the vertical slash).

RESERVED WORDS

GRiDBASIC reserves the words that represent its statements,
functions, operators, and constants for their individual tasks.
Because they are reserved, you cannot use them as variables.
However, you can place them within variables. The first two
following examples are valid; the second two aren’t.

INFUT "Type each extra item", REMainder$
LETter=ASC (Name%)

INFUT "Cost of unit"; VAL
LET Total=Data+(.0&45%Data)

In the first instance, the reserved word AND is hidden within the
variable "Bands." In the second, a reserved word, DATA, is used as
a variable.

This list also serves as a quick index to GRiDBASIC’s statements,
commands, operators, and functions. NOTE: The reserved words ON,
and USING are not whole commands, but with other words make up such
commands. These words are:

General Information 2-3

ABS END LEFTS FUT VAL

ACOS EOF LEN RANDOMI ZE WEND
AND EOLN LET READ WHILE
AS ERASEROX Loc REM X0R
ASC ERASECIRCLE LOCATE RESTORE "
ASIN ERASEDOT LOF RETURN #
ATN ERASEL INE LOG RIGHTS$ $
CDBL EXP LOG1O RND %
CHR$ FALSE LSET ROUND !
CINT FIELD MID% RSET)
CLOSE FOR MKD$ SGN (
CLRMSG GET MKI% SIN ¥
cos GETFILES MES$ SFPACES +
CSNG GOSUE MOD SER =
CvD GOTO MOVEBOX STACKMSE /
CVI IF NEXT STEP :
Cvs INKEY$ NOT STOF H
DATA INFUT ON STR$ <
DATES INFUT# ON GOTO STRINGS =
DIM INPUTS ON GOSUE TAB >
DOMENU INSTR OPEN TAN \
DRAWBOX INT OR THEN -
DRAWCHARS INVERTEOX PI TIMES :
DRAWCIRCLE INVERTCIRCLE PRINT TO =
DRAWDODT INVERTDOT PRINT USING TRUE

DRAWL INE INVERTLINE PRINT# TRUNC

ELSE KILL FRINT# USING USING

Table 2-1. GRi1DBASIC Reserved Words

CONSTANTS
Program execution operates on values that we call "constants."
GRiDBASIC recognizes two kinds of constants: string constants and
numeric constants.

String Constants

A string constant is a sequence of characters (ranging in length
from 0 to 65,535). NOTE: You can only enter one screenful of
characters at a time. A string constant can include any valid
character. You must place double quotation marks before any string.
If the string does not end the program line, you must also close it
with double quotation marks. You can treat a number like a
character string by placing it within quotation marks. GSee the
examples of string constants (surrounded by their quotation marks)
below:

2-4 GRiDBASIC Reference Manual

llAll

"$100,000,000,00"

"Quarterly Profit Statement”
"L

”675"

Numeric Constants

Numeric constants are positive or negative numbers. GRiDBASIC
operates on two different types of numeric constants: real numbers
(also known as decimal or floating point numbers) and integers.

GRiDBASIC performs all numeric operations in double precision. This
allows for 15 significant digits. GRiDBASIC handles numbers as
small as 4.19E-307 and as large as 1.67E308.

Feal numbers are positive or negative numbers that can include
decimal points. GRiDBASIC works on double precision, real numbers
and provides 15 digits of precision. Three examples of real number
constants are:

0.12345678901234
P87654321.098765
-1.1

NOTE: GRiDBASIC does not return numberes in scientific notation (also
known as "E notation"). You can enter numbers with the carat (™) to
indicate power (10°3 is the same as 10 cubed), but the GRiDEBASIC
will never print 10E3.

Integers are whole numbers between -327468 and +32767, inclusive.
Integer constants do not have decimal points. GRiDBASIC stores all
integer values in 15-digit format and converts them to real numbers
before operating on them. No cost in speed results: Operations on
real numbers are as fast as integer operations, because of special
arithmetic hardware.

Here are examples of integer constants:
-10101
(4]

2001
b4

General Information 2=5

VARIABLES

A variable is a symbol. It stands for the memory address where the
computer stores the expression you assign to the variable. Thus
"A=15" tells the computer to store the value 15 at a position in
memory that you have assigned the address "A." When BASIC executes
the program it substitutes the constant found at the address for the
variable.

Thus when the computer executes the command
PRINT A

it goes to the address labeled A, and prints the constant it finds
there. If we use the constant assigned above, the number 15 would
appear on the screen.

Variable names must begin with a letter, but the rest of the
characters in the name can be any number, letter, or the decimal
point. The length of a variable can range from one character to one
full screen.

Variables, like constants, can be one of two types: string or
numeric. The last character in a variable name identifies the
variable’s type.

String variables must end with dollar sign ($). For example:

Name$
DayODfWeek$

Integer variables must end with the percent sign (%). For example:

Age’
Answer’Z(2,3)

Real variables can end with any character except a dollar sign (%)
or percent sign (%). GRiDBASIC assumes all variables are real
variables, unless told otherwise. Thus the following are real
variables:

Results
Forecast_1983
al23.0
Radians%1.8

2-6 GRi1iDBASIC Reference Manual

ARRAY VARIABLES

An array 1s a group of values referenced by a single variable name.
Individual values in the array are called "elements." Because each
element is itself a variable, vou can place an element in an
expression. You can also operate on it with any function or
statement that takes variables as arguments.

Elements within an array are named with the array name combined with
a number (s) enclosed in parentheses. For example, i1f an array name
is Month% and consists of string variables that are the names of
months, you might refer to December (an element of the array) as
Month$(12) and January would be Month#%(1).

In the example above, the array named Month$ i1s a one-dimensional
array with 12 elements. An array can have up to 255 dimensions and
a single dimension can have up to 65,335 elements. The maximum
total number of elements you can place in an array is 65,533.

Thus you could have an array with 1 dimension and 65,535 elements
and you could have an array of 255 dimensions, each dimension having
257 elements. When you access an element in a multi-dimensional
array, you must specify the element’s position within each dimension
of the array.

The DIM statement specifies the number of dimensions that an array
can have and the number of elements within each dimension. You do
not have to dimension (DIM) variables, unless they have more than
one dimencion or more than ten elements. GRiDBASIC automatically
expands the storage space required for string variables. All arrays
start at 1 {one), not zero. Chapter Three describes the DIM
statement in detail.

EXPRESSIONS AND OPERATORS

In its simplest form, an expression consists of a constant or a
variable. You can also connect constants, variables, and functions
with operators. GRiDBASIC has three types of operators: numeric,
string, and logical.

Order of Precedence and Numeric Operators
GRiDBASIC supports the numeric operators listed below. We have

listed them by their order of precedence, that is, by the order in
which GRiDEASIC evaluates them when they appear in an expression.

General Information 2~-7

() Parentheses
Functions (SIN, LOG, etc. -- see Chapter Six)
= Unary minus (the negative sign)
Exponentiation

X / N MOD Multiplication, floating point division, integer
division

¥ = Addition, Subtraction
Relational Operators (See below)

Logical operators (See below)

Relational Operators

The relational operators are a special sub-category of numeric
operators and have the lowest precedence of all the numeric
operators. These are the relational operators. NOTE: All of these
operators have equal precedence.

£ Less Than

¥ Greater Than

<= Less Than or Egqual To

= Greater Than or Equal To
= Equal To

<> Not Equal To

Logical Operators

The logical operators, listed in order of precedence, are:

e NOT
s AND
e OR
a XOR

2-8 GRiDBASIC Reference Manual

In GRiDBASIC, logical operators perform logical (Boolean) operations
by acting on every bit in the 16-bit integer value presented to it.
To do this, GRiDBASIC follows three steps:

(:) Convert value to an integer
(:) Ferform a bit-wise logical operation

(:) Convert the integer back to a real number.

With the exception of NOT, a logical operator connects two or more
operands and returns a true or false value. NOT is a unary operator
(like the signs plus and minus) and simply changes the truth value
of its operand. The results, "true" (not zero) or "false" (zero)
value, form the basis for the computer to make a decision.

For example, in an IF statement, the computer takes one course of
action when it finds a zero and another course in the case of a
non-zero value. You must be careful in stating your logic. As an
example, here are four programs, all of which try to trap any
unwanted user responses. Their common theme is to act as an input
filter. The program only accepts a response of "Y" or "N." If the
user types any other character(s), the filter says "Sorry" and loops
back to the INFUT statement.

Look at the first program in Figure 2-1.

1000 REM Logic 1 —— Type mismatch

1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" OR "N" THEN GOTO 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, “3;: GOTO 1100

Figure 2-1. Example of a Type Mismatch Failure

It fails at line 1200 and issues a "Type mismatch" error message.
Why? Because the program first evaluates the statement

Answer$ <> "Y"
Depending on the response, it returns either a Boolean 0 or 1. The
OrR then compares the Boolean to N, a string. And that creates a

type mismatch, because GRi1DBASIC won’t compare data of differing
types (in this case, Booleans and strings).

General Information 2=9

2-10

The program in Figure 2-2 won’t find anything true. No matter what
you type, it says "Sorry." Look closely at line 1200.

1000 REM Logic 2 -- evaluates nothing as true

1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" OR Answer$ <> "N" THEN GOTO 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, "j: GOTO 1100

Figure 2-2. Example of Faulty Logic

In this case the logic says, if the input is either not Y or not N
then say "Sorry." But Y is not N and vice versa. Therefore, the
logic fails Y and N, as well as everything else!

Now for a working example.

1000 REM Logic 3 -- evaluates correctly

1100 INPUT "Y or N"; Answer$

1200 IF NOT (Answer$="Y" OR Answer$="N") THEN GOTD 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, "j: GOTO 1100

Figure 2-3. A Working Logic
In Figure 2-3, the logic says if the response is neither "Y" or "N,"
then say, "Sorry." That’s what we want, because if the response is

one of those, we have an appropriate input.

This is not to say that line 1200 in Figure 2-3 is the only way of
presenting this logic. Line 1200 in Figure 2-4 also works.

GRiDBASIC Reference Manual

1000 REM Logic 4 -- AND also works
1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" AND Answer$ <> "N" THEN GOTO 1500
1300 PRINT “"Thanks"

1400 END

1500 PRINT "Sorry, “"3;: GOTO 1100

Figure 2-4. Another Working Loagic

It =ays 1f the input is not "Y" AND not "N" say "Sorry." That's
what we want, because that’s what we see as an invalid response.

Chapter Five discusses each of the logical operators in details. It
also covers the two Boolean constants, TRUE and FALSE.

String Operators

String operators perform relational comparisons and concatenation on
string expressions.

The relational operators for string expressions are the same as
those described for numeric operators, because you are actually
performing numeric operations. For example, if you use the Less
Than (<) operator to compare two strings, the ASCII values for each
character in the two strings are compared toc see which has the
smaller numeric value. The result of the operation is thus a
numeric result.

NOTE: GRiDBASIC makes comparisons of alphabetic characters without
regard to capitalization. Thus the characters "A" and "a" are
regarded as equal even thouagh they have different ASCI] values.)
For a list of the relational operators, see the discussion in the
preceding paragraphs.

The plus symbol (+) "concatenates" or joins strings together. The
example below illustrates this.

A$="This 15 a "
E$="concatenated string"

Therefore, A% + B%$ becomes

"This is a concatenated string”

]

General Information -11

FILE NAMING CONVENTIONS

When your programs use the OFEN or KILL statements (discussed in
Chapter Eight), they must specify the name of the file to be opened
or deleted. You cannot perform these operations with the Transfer
command (CODE-T). However, you can incorporate the file form used
by the Transfer to get the file name information you need. To do
this, use the GETFILE$ command (see Chapter Eight). If you choose
GETFILE$, you can ignore the details of the Compass Computer
operating system’s file npaming conventions given below.

You identify a file by specifying its "pathname". A pathname
defines the route the computer takes to a file. A complete pathname
includes the device and subject where the file 1s located plus its
title, and kind. The complete pathname schema is as follows:

‘device*subject "title™kind

Thus to specify a GRiDWRITE file with the title Forecast, when it
resides under the subject Business on the bubble, you would enter,

‘b *Business ‘Forecast™Text

The system defaults to the current device, subject. and kind. As a
result, you don’t have to respecify them. If you were staying
within current defaults, you could open the example file by typing

1000 OPEN "I",2," *Forecast” {)

where 1000 is the line number, "I" indicates sequential input, and 2
i the file tag number (See the OPEN statement in Chapter Eight for
syntactical details.)

Note the two pathname delimiter characters: the left single quote
(") or "tick" and the tilde (™). The tick must precede device,
subject, and title names. Press CODE-" to print a tick. The tilde
(™) must precede the kind. Generate this character by pressing the
CODE-; combination.

If you specify a pathname that does not begin with the tick, the
system assumes that the first name it encounters is the title and
that you have left off the device and subject names. This limits
the search for the title to the current directory, that is, to the
current device and subject and makes file access quicker.

It you provide the complete pathname including device, subject, and
title, the computer first searches all active devices for the
subject. From the subject i1t then searches for the title. If the
title is on-line, this process locates it.

The maximum length of subject and title names is BO characters each.

2=12 GRiDBASIC Reference Manual

Subject and title names can consist of any printing characters
{including spaces) except the following:

5 left single quotation mark ("tick")
= tilde
- hyphen

colon

File Kinds

Flacing the file kind (sometimes referred to as the file "type")
after a title 1s optional. Kinds let you classify several related
files under the same title while assigning them different "kind"
characteristics. Interpretation of the kind is left up to the
application. For a thorough discussion of file kinds refer to the
"Compass Computer Operating System Reference Manual."

Delimiters

Delimiters are characters that set off certain programming elements
from others, so that the language’s "interpreter" can separate
variables from operators from constants from reserved words.
GRiDBASIC has only one delimiter, the space character.

Though you needn’t place spaces around operators (with the exception

of MOD)., you should place them around variables and reserved words.
Improper delimiting results in an "Improper syntax" message.

General Information 2=13

CHAPTER 3: ASSIGNMENT AND DEFINITION STATEMENTS

The statements in this chapter assign values to variables and define the size
of arrays.

GRiDEASIC Reference Manual B—1

DIM

This statement establishes the dimensions of an array and allocates
storage space for the specified number of elements.

FORMAT

DIM variableMame(subscripts)[.variableName(subscripts)l...

NOTES

You must dimension (DIM) any array that consists of more than ten
elements or more than one dimension. If an array variable name is
used without the DIM statement, the maximum value of its subscript
is 10.

A subscript is an expression that defines the maximum number of
elements in an array. It follows the array variable name and is
enclosed in parentheses. Thus,

Year (12,31)

is a two-diimensional array. The first subscript can contain as many
as 12 elements, the second 31. The minimum value of a subscript is
one, not zero.

The maximum number of dimensions that an array can have is 2535.-
Dimensions can hold any number of elements as long as the total
number of elements for the entire array does not exceed 65,535.

Thus if you dimensioned an array to have one dimension containing
65,534 elements, you would have limited your program to having just
one other dimension, and a dimension possessing only one element, at
that!

1f a program tries to reference more elements than the subscript
allows, you will see the error message:

Array reference is out of range
You can establish the dimensions of more than one variable array at
a time with a single DIM statement. Just separate the specification
for each variable array with a comma. For example, the statement
1000 DIM ANSWERS(Z,14,100) ,NAMES (Z20)
defines a numeric variable array with the name ANSWERS having three
dimensions and 2800 elements (2 x 14 » 100). The same DIM statement

defines a string variable array called NAME$ with one dimension that
can have 20 elements.

3-2 Assignment and Definition

EXAMPLE

A note on string arrays: With GRiDBEASIC, you don’t have to dimension
the actual strings, just the number of elements.

Subscripts can be numeric variables, instead of constants. Ee sure
that you have previously declared any such variable; otherwise, vyour
subscript will amount to zero. For example,

1000 DIM GONZD(23, A, B)

dimensions a numeric arrav. The first dimension has an absolute
maximum number of elements, 25. The second two depend on what value
you (or the program) have previously assigned the numeric variables
A and B. NOTE: If a variable should change its value later, the
array will remain unaffected. It holds the original wvalue until you
redimension it.

To redimension an array, just restate its DIM statement with the
desired values. Redimensioning automatically clears the old array.

1000 DIM Array(4)
1100 FOR X=1 TO 4
1200 Array (X)=X
1300 NEXT X

1400 FOR X=1 to S
1500 PRINT Array(X)
1600 NEXT X

2000 END

In this example, line 1200 assigns values from the loop (the value
of X) to each element in the array. We assign four values to four
elements, so everything is fine.

However, line 1400 exceeds our dimension by one, so the program
halts when it tries to handle this larger number, leaving the error

messaqge:

Array reference is out of range
Program stopped at line 1500

We can fix this problem by changing the 5 to a 4 in line 1400,

GR1DEASIC Reference Manual 3=3

LET

FORMAT

NOTES

EXAMPLE

The LET statement assigns the value of an expression to a variable.

[LET] variableName=expression

LET is optional. You can write the variable followed by the equal
gign and then the expression with the value to be assigned without
the word LET.

The two following statements perform exactly the same; they both
store the value 2 at the variable LoopCounter.

1000 LET LoopCounter=2
1000 LoopCounter=2

If you assign a numeric value to a string variable or a string value
to a numeric value a Type Mismatch error occurs.

1000 LET X=20
1100 Y=X¥3
200 PRINT X
1300 PRINT Y
1400 END

The example assigns values to variables with and without the LET
statement. Lines 1200 and 13200 print each value, showing that both
ways work.

3-4 Assignment and Definition

READ

FORMAT

NOTES

DATA [RESTOREI]

READ, DATA, and RESTORE constitute a trio of statements that, as a
team, assign values to variables. NOTE: RESTORE 1s optional.

READ variablel,variablel(, ...]

[RESTORE [line#]]

DATA constantl,constant][, ... 1]

THE READ STATEMENT

The READ statement begins with the word "READ" and follows that with
at least one variable. The following are legal READ statements:

1000 READ NewNumber
1200 READ LastName$, Counter
1300 READ A, B, C, D

The READ statement assigns its variable(s) the value(s) 1t finds in
the program’s DATA statement(s).

READ cannot operate alone; its program must contain at least one
DATA statement. Each time the program executes a READ, it moves a
pointer to the next item in the DATA statement list. When program
execution begins, READ has its pointer set to the first item in the
first DATA statement. When no more DATA items exist, a

Ran out of data

error occurs. You can reset this pointer with the RESTORE statement
(see below).

When a program has more than one DATA statement, READ proceeds by
line number, reading all the data in each program line before
continuing to the next line. Within each line, it reads each item
of data in order.

A READ statement can have both numeric and string variables. The

values read from the DATA statement are assigned on a one-by-one
basis to the variables. These values, however, must agree with the

GR1DBASIC Reference Manual 3—9

variable types specified in the READ statement or a Type Mismatch
error occurs. ’

One READ statement can take constants from one or more DATA
statements, because GRiDBASIC strings the items in multiple DATA
statements together in one long list. Similarly, more than one READ
statement can operate on a single DATA statement. Each READ
statement takes the next item in the DATA statement(s) list of
items.

THE DATA STATEMENT

A DATA statement begins with the word "DATA" and follows it with a
list of numeric and/or string constants. (A list can be as short as
one item.) A comma must separate individual constants, but should
not appear after the last item. For example,

2900 DATA 1492, "Nina, Pinta, Santa Maria", Columbus, 3.14

Numeric constants can be integer, real, or short real numbers.
String constants can have up to 45,535 characters, the maximum
length for any DATA statement. These strings require no quotation
marks unless they contain commas, colons, or significant leading or
trailing spaces. NOTE: Expressions are not permitted in DATAR
statements.

A program can include as many DATA statements as memory permits.
You can place them anywhere within a program f{even after an END):
they are nonexecutable.

THE RESTORE STATEMENT

EXAMPLE

RESTORE resets the READ statement’s pointer to the beginning of the
specified line. If you don’t specify a line, the pointer returns to
the first DATA statement in the program and its first item.

1000 DATA agate, 3465, boy., cow, 3.14, dog, elbow, foot, girl, 100
1100 READ A%

1200 PRINT AS.

1300 GOTO 1000

1400 END

This example mixes both string and numeric constants in its DATA
statements. When line 1100 reads line 1000, it turns the numeric
constants into strings. The example immediatley below is exactly
the same program, but with ite DATA statement in a different
position.

3-6 Assignment and Definition

1000 READ A%

1100 PRINT AS%,

1200 GOTO 1000

1300 END

1400 DATA agate, 345, boy, cow, 3.14, dog, elbow, foot, girl, 100

The results are exactly the same. See Figure 3-1

agate 3€5 boy couw
3.14 dog elbouw foot
girl 100

Figure 3-1. Results of a Simple READ DATA Frogram

In the next example. the READ statement contains both a string and a
numeric variable (see Figure 3-2). As the result of this program
show, the two variables take turns drawing from the DATA statements.

1000 DATA agate, 365, ball, 123, cake, 3.14, doll, 100
1100 READ Noun$, Number

1200 PRINT Noun$;" is a noun"

1300 PRINT Number;" is a number"

1400 GOTO 1000

1500 END

agate is a noun
365 is a number
ball is a noun
123 is a number
cake is a noun
3.14 is a number
doll is a noun
198 is a number

Figure 3-2. Results of a READ with Two Variables

The example below contains three READ statements. In each case, a
loop controle the number of times the READ statement acts. In this
way, none of the statements runs out of data.

GRiDEASIC Reference Manual =

3-8

1000 FOR Counter=1 TO 3

1100 READ X

1200 FRINT "X = "1X,

1300 NEXT Counter

1400 PRINT: PRINT: RESTORE 2600: PRINT "A RESTORE statement
here":FPRINT

1600 LET LoopCount=0

1700 WHILE LoopCount <*> 9

1800 LET LoopCount=LoopCount+1

1900 READ Y

2000 PRINT "Y = ":Y,

2100 WEND

2200 PRINT: PRINT: RESTODRE 2600: PRINT "A RESTORE statement here":
PRINT

2300 READ Z

2400 IF Z<» 11 THEN PRINT "Z = ";Z, ELSE END

2500 GOTD 2300

2600 DATA 1, 2, 3, 4

2700 DATA 6, 7, B, 9, 10, 11

Assignment and Definition

REM

This statement lets you insert explanatory remarks into a program.

FORMAT

{REM remarks | “remarksk

NOTES

GRiDBASIC does not execute REM statements. They only appear when
you display or print the program listing.

GRiDBASIC also recognizes a single quotation mark or apostrophe (%)
as a REM statement. If you branch intc a REM statement (from a
GOSUE or GOTO statement), execution continues with the first
executable statement after the REM statement.

You can put a8 REM statement on a multiple statement line by
separating it from preceding statements in the normal way, with a
colon. NOTE: Frogram execution ignores any statements that follow a
REM statement within the same program line. Note further that REM =
take up memory space and slow program execution.

EXAMPLE

1000 REM This text is a remark.

1100 *This text is a remark.

1200 REM The next statement won’t print: PRINT "You’re Right!"
1300 END

The first two statements are equivalent. The final statement

demonstrates what happens to commands placed after a REM. Nothing!
I¥f you run this program, all you will get is a blank screen.

GRiDBASIC Reference Manual 3-9

CHAPTER 4: STATEMENTS THAT CONTROL PROGRAM FLOW

This chapter describes statements that alter or halt normal
statement-by-statement execution and allow loops and conditional execution of
statements.

Program Flow Control 4-1

END

NOTES

EXAMPLE

This statement terminates program execution and closes all files
that were opened. .

END

You can terminate program execution with either the END statement or
the STOP statement (described later in this chapter). END differs
from STOP in that END closes all files. Therefore, you cannot
resume program execution with the Continue command (CODE-C). When
an END is encountered, the following message is displayed:

Program stopped at line nnnn

where nnnn is the line number where the END was encountered. You
can return to the program editor by pressing any key. You can begin
program execution again by pressing CODE-R (the Run command).

An END statement at the end of a program is optional. If there is no
END statement at the end of the program, files remain open until you
exit the program with the Quit command (CODE-Q).

Regardless of when the END statement is encountered and executed, it
always causes termination of program execution.

1000 LET A=5

1100 INPUT "A equals 5. How much should B equal "3;B
1200 IF A<>B THEN END

1300 PRINT "Good-bye for now..."

1400 END

The END statement can live within a program as easily as it does at

the end. This example contains two END statements -- one at the end
and the other within another statement (line 1200). The logic says

to end if the variables A and B are unequal. If they both equal 5,

print a "good-bye" message before ending.

4-2 BRiDBASIC Reference Manual

FOR TO L[LSTEFP1 NEXT

The FOR ,TO, and NEXT trio of statements create a program loop.
Instructions within this loop repeat each time the loop executes.
These statements help define the range., increments, and number of
loops. Programmers often refer to these as "For Next loops.”

FORMAT
FOR variablel=expression! TO expressionZ [STEP expressioni]

NEXT variablel

NOTES
The following list describes the four parameters taken by FOR NEXT.
variablel: A variable that acts as a counter.
expressionl: The initial value or setting for the counter.
expression2: The final or limit value of the counter.

expression3: The increment value added to or subtracted from the
counter after each pass through the loop. This
expression i1s optional. If you don’t specify a value,
GRiDBASIC acssigns a value of 1 (one!.

When program execution encounters the FOR statement, it checks to
determine if the initial value {(expressionl) of the counter
(variablel) is greater than the final value (expression 2). If it
is already greater, the body of the loop is skipped and the
statement following the NEXT statement is executed.

If it is not greater, the program lines following the FOR statement
are executed until the NEXT statement is encountered. At that
point, the counter (variablel) i1s incremented (or in the case of a
neqgative STEF, decremented) by the amount specified in expression3.
Frogram execution then branches back to the FOR statement and the
process is repeated.

If the STEP value (expression3) 1= a negative, the logic just
described is reversed. The loop is skipped when the counter
(expression2) is less than the final value and the counter 1is
decremented after each pass through the loop.

If expression2 {the STEF increment/decrement) evaluates to zero, an
endless loop occurs, unless you provide some method of setting the

Frogram Flow Control 4-3

counter greater than the final value.

You can "nest" FOR NEXT loops (place one FOR NEXT loop inside

another) to whatever depth you want: you are limited only by the \naj
amount of available memory. When you nest loops, you must provide a

unique variable name for each loop counter.

Make sure that that the NEXT statement for an inside loop appears
before that of an outside loop. A loop like

1000 FOR X=1 TO S
1100 FOR Y=1 TO 10
1200 PRINT X, Y
1700 NEXT X

1400 NEXT Y

causes an "Improper loop nesting" error message. Reversing lines
1300 and 1400 would solve the problem.

NOTE: You can jump out of a FOR NEXT loop., but NEVER jump into the
middle of such a loop. The reason is that such jumps usually fail
to properly initialize the counter and loop limits.

EXAMPLE

1000 FOR Counter = 1 70 S

1100 PRINT "Counter now equals ";Counter \h/}
1200 Next Counter

1300 FRINT "Counter equals "j;Counter

1400 END

This first example shows a simple loop. The new value of the
counter prints each of the five times the program executes the loop.
When the value of the counter reaches &6, the counter fails the test
and execution passes out of the loop to print the end value of the
counter (line 1300).

As with other examples, feel free to modify this example, playing

with your own loop sizes and controls. A more complex example
follows.

4-4 GRiDBASIC Reference Manual

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

This

REM The outer Loop begins on the next line
FOR OuterlLoop=1 TO 3

PRINT: PRINT "Outer Loop number":; OuterlLoop; " and counting..."”
REM The inner or "nested" loop is next

FOR InnerLoop=27 TO O STEF -3

FRINT Innerloop; " ";

NEXT InnerlLoop

REM That’s it for the inner loop

FRINT

NEXT OuterLoop

REM And that’s it for the outer loop

END

example demonstrates nested loops, use of the STEF instruction

and negative STEPs. The outer loop beqgins at l:ne 1100 and ends at

line

1600.

1900. The inner loop begins at line 1400 and ends on line

-

Steps in the inner loop decrement by units of -3I.

Frogram Flow Contraol 4-5

GOSUE RETURN

FORMAT

NOTES

4-6

The GOSUER statement transfers control to a subroutine at specified
line number. The RETURN statement must appear at the end of that
subroutine and returns control to the main program.

GOSUR line#

subroutine
RETURN

The line# is the line number of the first line of the subroutine.
(A subroutine is one or more statements that performs a distinct
task). A GOSUE jumps program execution to a subroutine. (This is
sometimes referred to as "making a subroutine call".)

When the RETURN statement is encountered at the end of that
subroutine, it causes execution to return to the statement following
the most recent GOSUE statement. You can have more than one RETURN
statement within a subroutine for situations where you want to exit
the subroutine at different points.

If the specified line number contains a non-executable statement
(for example a DATA, REM, or DIM), execution will begin at the first
subsequent executable statement after line#.

You can call a subroutine as many times as you want, and you can
call one subroutine from within another. Your only limit on this
nesting of subroutines is the amount of available memory.

GRiDBASIC Reference Manual

EXANPLE

1000 GOSUE 1900

1100 PRINT "Dive! Dive!"

1200 GOSUE 1200

1300 GOSUE 1700

1400 GOSUB 1900

1500 PRINT: PRINT "At last. The END is in sight."
1600 END

1700 PRINT:PRINT "So this is a "GOSUB.” Time to surface...”
1800 RETURN

1900 REM The next line just loops for time

2000 FOR X=1 TD 400: NEXT X

2100 RETURN

In this example, we have two subroutines -- one beginning at line
1700 and the other at line 1900. We call the subroutine three times
during program execution to put time between the execution of the
print statements. Note that the subroutine at line 1900 begins with
a REM, not with an executable statement.

Frogram Flow Control 4-7

GOTO

FORMAT

NOTES

EXAMPLE

This statement causes an unconditional transfer of control to a
specified line number.

GOTO line#

The GOTO statement differs from the GOSUB statement in that it lacks
a RETURN statement. Any return of program execution to the line
following the GOTO line must be forced by another GOTO.

If line# specifies a line containing an executable statement, then
that statement and those following it are executed. If the
specified line does not contain an executable statement (for
example, a DATA statement), then execution continues at the first
executable statement after the line specified by line#. The
intervening lines are simply ignored.

NOTE: GRiDBASIC does not support an "implied GOTO" as in the example

2200 IF A=B THEN 1700

1000 PRINT "This line (1000) contains a GOTO statement.": GOTO 1300
1100 Print "This is the line (1100) after the first GOTO."

1200 GOTO 1500

1300 PRINT "This is the first line (1300) you went to."

1400 GOTO 1100

1500 PRINT "The END. (See message below.)": END

In this example, program execution jumps from line 1000 down to line
1300. It then jumps back up to line 1100. Execution moves straight
down from 1100 to 1200 where the final GOTO appears, sending
execution to the last line.

To understand the term "infinite" loop, remove line 1200 from this
program and watch what happens. Remember: Pressing ESC will stop
any such loop.

4-8 GRiDBASIC Reference Manual

IF THEN L[CELSE]

FORMAT

NOTES

These statements allow the conditional execution of one of two
statements or a series of statements, based on the result of an
expression evaluation.

IF expression THEN statementlil:statementla:statementib ... J[ELSE
statement2][:statement2a:statement2b ...]

If the expression following IF is true (not zero), the statement
following THEN executes. If an ELSE statement exists, execution
skips it.

If the result of the expression evaluation is false {(zero), program
execution skips any statement(s) following THEN and executes any
ELSE statement(s). If no ELSE statement exists, execution goes to
the next line number.

ELSE statements are optional. An ELSE statement only executes when
the IF statement evaluates as zero (false).

Look at the following example:

1000 IF A=B THEN PRINT "Equal": GOTO 1500 ELSE PRINT "Unequal"
1100 GOSUB 2000

If A does equal B, then the computer will print the word "Equal" and
it will jump to line 1300. However, if A does not equal B, neither

the THEN statement nor the GOTO will execute. Instead, the program

will execute the ELSE statement and print the word "Unequal" before

continuing to line 1100,

You can follow the THEN and ELSE statements with as many statements
as you want. The statements must be separated by colons (:) and can
be either on the same line or on a new line. If on a new line, the
statements cannot have a new line number; they are considered part
of the same line as the THEN or ELSE statement. Thus both of the
following sequences are valid:

100 IF A=E THEN C=D:
E=F

ELSE J=K
200 «uw

100 IF A=H THEN C=D:E=F ELSE J=K

Program Flow Control 4-9

EXAMPLE

4-10

Note the absence of a colon between E=F and ELSE in the second
example. The ELSE statement (if present) is also considered to be
part of the same line as the IF and THEN statements and should not
be separated from the preceding statement by a colon nor should it
have a new line number. Therefore, the following sequences are
invalid:

100 IF A=B THEN C=D:E=F
200 ELSE J=K

and also
100 IF A=B THEN C=D:E=F:ELSE J=K

You can nest IF THEN ELSE statements to any depth: you are limited
only by the amount of available memory. If the statement does not
contain the same number of ELSE and IF THEN clauses, each ELSE is
matched with the closest unmatched IF THEN.

NOTE: The word "THEN" must always follow an IF clause. The
following statement, omitting THEN, is not valid.

2200 IF A=B GOTO 1700

1000 Even$="Even Steven!": 0dd$="0dd Bodkins!'"

1100 INPUT "Try some conditions (Y/N and confirm)";Answer$

1200 IF Answer$="N" THEN PRINT "Whatever you say.": GOTO 14600
1300 INPUT "Type any integer and confirm (ESC to stop):",Number
1400 If Number MOD 2=0 THEN FRINT Even$% ELSE PRINT Odd$

1500 GOTO 1300

1600 END

This example contains two IF THEN statements -- lines 1200 and 1400.
The line 1200 statement lacks an ELSE, but attaches a statement
after THEN. If the condition is true, both will execute. The
message "Whatever you say," prints and the program jumps to the END
statement. However, if the statement evaluates as false, then
execution falls through to the next line (1300).

Line 1300 contains a straightforward IF THEN ELSE statement. If the
modulo test yields a O, print the string variable for "even." If
false, ELSE prints the "odd" string.

NOTE: The ESC key function mentioned in line 1300 comes from the
system, not from this program. Remember: You can press ESC to halt
execution of any GRiDBASIC program.

GRiDBASIC Reference Manual

ON GOTO and ON GOSUE

FORMAT

NOTES

EXAMPLE

These statements cause an unconditional transfer of control to one
of =several specified line numbers. The particular lines depend on

the result obtained by evaluating the expression following the ON
statement.

ON expression GOTO line#l,line#l...
and
ON expression GOSUE line#l,line#]...

ON GOTO does 1n one statement what IF THEN would take numerous
statements to achieve: 1t takes an expression and uses its value to
send program execution to a particular line number.

In the example below, if the variable ANSWER evaluates to 2, program
execution jumps to the second line number in the list, 1500.

S00 ON Answer GOTO 1000, 1500,2000

NOTE: GRiDBASIC rounds the expression value to an integer, if
necessary. If the expression value is zero, or if it is greater
than the number of line numbers in the list, execution simply
continues with the next executable statement in the program.

1000 INFUT "Enter a number from 1 to 5 and confirm",A
1100 ON A GOTO 1200, 1300, 1400, 1500, 1600

1110 FRINT "Your entry is out of range.": GOTO 1000
1200 PRINT "ONE": GOTO 1000

1300 PRINT "TWO": GOTO 1000

1400 PRINT "THREE": GOTO 1000

1500 PRINT "FOUR": GOTO 1000

1600 PRINT "FIVE": GOTO 1000

This example prints the name of the number given the INFUT
statement. This i1s a typical use for ON GOTO in that particular
values must connect with particular items. A more complex example
might connect a U.S. Fresident’s order in the Presidency with his
name.

If you enter a number greater than five or less than one, execution
will drop through the ON GOTO statement to the next line, an error

Program Flow Control 4-11

4-12

message and a GOTO sending execution back to the INFUT statement.

Note the GOTO statements following each of the line numbers in the
list (1200-1600). Without such an ending statement (you could ucse
END, too), execution continues and prints all subsequent numbers.
Hardly our purpose.

When you run this program, give it some out of range numbers and
some decimals to see what happens. An example of ON GOSUE follows.

1000 INFUT "Enter a number from 1 to S and confirm",A
1100 ON A GOSUE 1300, 1400, 1500, 1600, 1700

1200 IF A<1 OR A>S THEN GOTO 1800 ELSE GOTO 1000

1300 PRINT "ONE": RETURN

1400 FPRINT "TWO": RETURN

1500 PRINT "THREE": RETURN

1600 FRINT "FOUR": RETURN

1700 FPRINT "FIVE": RETURN

1800 PRINT "Out of range": GOTO 1000

This 1s the same program except that an ON GOSUE statement guides
excecution to the proper line number. And because this is a GOSUB,
a RETURN statement must end the one line subroutine.

RETURN sends execution to line 1200. To accomodate this, and still
be able to issue an "Out of range" message, line 1200 contains a new
logic. It checks to see if the input is within range. If it is,
the program loops to the first line again. If not, execution goes
to the error message on line 1800 before going to the first line.

GRiDBASIC Feference Manual

O

STOF

The STOP statement suspends program execution.

FORMAT

STOP

NOTES

The STOF statement suspends program without closing any files. STOP
serves as a good debugging tool; you can halt execution, check the
status of variables, and then continue. You continue program
execution by pressing CODE-C (the Continue command). Fressing any
key return you to the program editor.

When a STOP is encountered, the following message appears:
Frogram stopped at line nnnn

where nnnn is the line number where the STOFP was encountered.

EXAMPLE

1000 A%$= "Hit the brakes!''!'"

1100 B$= " There’s a STOF line just ahead."
1200 C$=A%$+B%

1300 PRINT "Screeeeeeeeech"

1400 STOP

1500 PRINT C$

This example declares and concatenates two string variables. The
STOF at line 1400 gives you the chance to preview the concatenation
before executing it. By entering the direct mode and typing "PRINT
C¢," you can see what C% looks like. Press CODE-C to continue.

Frogram Flow Control 4-13

WHILE WERND

FORMAT

NOTES

EXAMPLE

4

14

These statements create a program loop that continues to execute as
long as the WHILE statement evaluates as true.

WHILE expression
statement (s) and/or functions

WEND

If the result obtained by evaluating the expression is true {(not
zero), the statement or statements between the WHILE and WEND
statements will be executed. WEND returns execution to the WHILE
statement for another evaluation of the expression.

The intervening statements execute until the expression evaluates to
zero (false). If the expression evaluates to zero the first time it
is encountered, then the intervening statements will not execute at
all. After the expression evaluates to zero, execution continues
with the first executable statement following the WEND statement.

You can nest WHILE WEND statements to any depth; you are limited
only be the amount of available memory. Program execution matches
each WEND with the most recent WHILE. If you have unequal numbers
of WHILE and WEND statements, an error will occur -- "Improper loop
nesting error."

If you write FOR NEXT loops inside of WHILE WEND loops (or vice
versa), be sure the inner loop lies entirely within the outer loop.

1000 LET GuessMe=TRUNC (S¥RND(1)+1)

1100 WHILE UserGuess <> GuesesMe

1200 INPUT "Guess a number between 1 and 5";UserGuess

1300 WEND

1400 PRINT "You got it! The number was "j;GuessMe

1500 INFUT "Want to try again (Y or N)";YesNo$

1600 IF YesNo$ = "Y" THEN GOTO 1000 ELSE PRINT "Okay, bye'!": END

This example is a guessing game that asks you to enter a number.

The WHILE statement then tests to see if you guessed correctly. If
the number qualifies, program execution falls through the WHILE WEND
loop to the message. If the comparison fails, execution stays
within the WHILE WEND loop, asking for another input.

GRiDEASIC Reference Manual

CHAPTER FIVE: GRiDBASIC ARITHMETIC AND LOGIC

This chapter describes GRiDBASIC's arithmetic statements, functions, and
constants. Chapter Five alsoc discusses the GRiDBASIC’s four logical operators
-— AND, NOT, OR, and XOR -- plus its two Boolean constants, TRUE and FALSE.
Additionally, it covers the two integer operators: integer division and MOD.

NOTE: Although not documented like other operators, GRiDBASIC has the four
essential arithmetic:

s + (Addition)

® - (Subtraction)

@ ¥ (Multiplication)
e / {(Long Division)

See Chapter Two for details on precedence among arithmetic, relational, and
logical operators.

This chapter opens with a discussion of GRiDBASIC's six integer functions. It
also discusses them individually within the chapter.

Arithmetic and Logic et |

INTEBER FUNCTIONS

GRiDBASIC has six ways of converting floating point numbers to \h_/
integers:

s CINT

s FIX

s INT

® ROUND

@ TRUNC

® Assignment of a value into an integer variable (symbolized as
VAR below).

Table 5-1 below illustrates how GRiDBASIC applies its various
functions to converting floating point numbers. NOTE: To ensure
accuracy when converting decimals to integers, choose either
ROUND or TRUNC. GRiDBASIC includes the CINT, FIX, and INT
functions for compatibility with other BASIC’s. The table below
shows that ROUND performs the same as CINT and TRUNC acts like

Fl¥%.
FUNCTION « J
CINT FIX INT ROUND TRUNC VAR
-3.50 -4 -3 -4 = -3 -4
INPUT -3.49 -3 -3 -4 -3 -3 -3
3.49 3 3 3 3 v 3
3.50 4 3 3 4 3 4

33000.00 -32536 -32536 -32536 33000 33000 -325356

Table 5-1. A Table of Integer Functions

A discussion of each of GRiDBASIC’s arithmetic functions begins
on the next page. NOTE: GRiDBASIC cannot guarantee accurate
integers whenever you give it a number that exceeds the
boundaries of integer arithmetic: -32748 to +32767 inclusive.

=2 GR1DEASIC Reference Manual

AEBS

FORMAT

NOTES

EXAMPLE

This function returns the absolute value of its expression.

ABS (expression)

The absolute value of the expression is the value unsigned. AES
strips away the minus sign of negative numbers. The absclute
value of a number is always positive or zero.

1000 INPUT "Enter a number and confirm",A
1100 B=ABS(A)

1200 PRINT "Absplute value is ":H

1300 GOTO 1000

1400 END

Arithmetic and Logic

U
0

ACOS

The arc cosine function.

FORMAT
ACOS (expression)

NOTES
This function takes an expression representing an angle in
radians and returns its arc cosine (in the range of 0 to pi).
GRiDBASIC evaluates this expression in full precision. To
convert from degrees to radians, multiply by pi/180.

EXAMPLE

1000 INFUT "Enter a number between -1 and 1";Number

1100 PRINT

1200 Rads=ACOS (Number)

1300 Degrees=Radsk (1BO/PI)

1400 PRINT "The arc cosine of "; Number; " is ";Degrees; "
degrees"

1500 PRINT: PRINT

1600 GOTO 1000

1700 END

o5-4 GRiDBASIC Reference Manual

AND

FORMAT

NOTES

EXAMPLE

The logical operator for conjunction

expressionl AND expressionZ

The AND function unites elements, calculates their combined truth
value, and issues a Boolean true or false. As the AND truth
table (Table 5-2 below) shows, AND only issues a true (non-zero)
when both elements are true.

A B AAND B
-1 s | ~1
-1 0 0
Q -1 0
0 0 0

Table 5-2. The AND Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 AND B=4 THEN PRINT "You win!" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

As long as you enter both elements correctly (3,4), you win. Any
other combination fails.

Arithmetic and Logic 5-5

S5-6

ASIN

The arc sine function.

FORMAT

ASIN(expression)

NOTES

This

function takes an expression representing an angle in

radians and returns the arc sine of that angle. GRiDBASIC
evaluates this expression in full precision. Arc sines fall into
the range of -pi/2 to pi/2. To convert from degrees to radians,
multiply by pi/180.

EXAMPLE

1000
1100
1200
1300
1400
1500
1600
1700

INFUT "Enter a number between -1 and 1"j;Number

FRINT

Rads=ASIN (Number)

Degrees=Rads¥ (180/F1)

PRINT "The arcsine of "; Number; " is ";Degrees: " degrees"
PRINT: PRINT

GOTO 1000

END

GRiDBASIC Reference Manual

ATN

FORMAT

NOTES

EXAMPLE

The arc tangent function.

ATN(expression)

This function takes an expression representing an angle in
radians and returns the arc tangent of that angle. GRiDBASIC
always evaluates this expression in full precision. The result
falls in the range of -pi/2 to +pi/2. To convert from degrees to
radians, multiply by pi/180.

1000 INPUT "Enter a number "j;Number

1100 PRINT

1200 Rads=ATN (Number)

1300 Degrees=Rads¥ (180/FI)

1400 PRINT "The arc tangent of ": Number:; " is "j;Degrees; "
degrees"

1500 PRINT: FRINT

1600 GOTO 1000

1700 END

Arithmetic and Logic 5-7

CDEL

The convert to double precision statement

FORMAT
CDEL (expression)

NOTES
Because GRiDBASIC performs all operations in double precision,
this statement does nothing. It exists only for compatibility’s
sake. See CSNG belaow.

EXAMPLE

1000 LET Some=CDEL (4)
1100 PRINT Some
1200 END

Put any number you want in the parentheses. Line 1100 displays
it just as you entered it.

5-8 GRiDBASIC Reference Manual

CINT

FORMAT

NOTES

. EXAMPLE

The CINT (convert to integer) function converts an expression to
an integer.

CINT (expession)

CINT performs the conversion by rounding the fractional portion
of the number.

NOTE: This function is identical to the GRiDBASIC’s ROUND
function described later in this chapter. The existence of both
functions enhances the compatibility of GRiDBASIC with other
BASIC’s. See the discussion of integer functions at the
beginning of this chapter.

1000 INPUT "Enter any number and confirm", Decimal
1100 Answer=CINT (Decimal)

1200 PRINT "The CINT integer is ":Answer::PRINT
1300 GOTO 1000

Arithmetic and Logic o-9

S—-

cos

FORMAT

NOTES

EXAMPLE

The cosine function.

COS{expression)

This function takes an expression representing an angle in
radians and returns the cosine of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

1000 INFUT "Enter angle (in degrees) and confirm",Angle

1100 Rads=Anglex(PI/180)

1200 Calculation=CO0S(Rads)

1300 PRINT "The cosine of ":;Angle:;" degrees is "; Calculation:
PRINT

1400 GOTO 1000

10 GRiDBASIC Reference Manual

CSNG

FORMAT

EXAMPLE

The convert to single precision statement

CSNG (expression)

Because GRiDBASIC performs all operations in double precision.
this statement does nothing. It exists only for compatibility’s
sake. See CDBL above.

1000 LET Some=CSNG(4)
1100 PRINT Some
1200 END

Put any number you want in the parentheses. Line 1100 displays
it just as you entered it.

Arithmetic and Logic o1

EXF

FORMAT

NOTES

EXAMPLE

The exponential function, referred to in mathematics as "e."

EXF{expression)

In BRiDBASIC, a natural logarithm has a base of
2.7182818828457905

The EXF function raises this base number to the power given as
its expression. Thus

EXP(2)
equals 2.718281882845903 squared.

LOG is the inverse function of EXF, as demonstrated by the
example program below. For this reason "the exponential of" and
"the natural antilogarithm of" are synonymous phrases.

If the expression evaluates to greater than or equal to
approximately 200, an overflow occurs.

1000 INFUT "An exponent please";Anex

1100 LET Answer 1=EXP(Anex)

1200 FRINT "The natural log’s value raised to the power ";fnex:;"
is": PRINT Answerl: PRINT

1300 Answer2=L0G{(Answerl)

1400 PRINT "The natural log of this number is ";AnswerZ: PRINT
1500 Answer3=L0G10 {(Answerl)

1600 PRINT "Its log to the base 10 is ";Answer3:PRINT

1700 GOTO 1000

1800 END

5-12 GRiDBASIC Reference Manual

4

FALSE

FORMAT

NOTES

EXAMPLE

The Boolean constant for false.

FALSE

The constant FALSE has a value of 0. Statements can i1nteract
with it in a number of ways. You can assign 1ts value to
variables, operate it on i1t logically, print it. The program
below does all these things.

1000 PRINT "True=":TRUE: " and False=";FALSE

1100 INPUT "Type the number 3": A

1200 IF A=3 THEN B=TRUE ELSE B=NOT TRUE

1300 FRINT B;

1400 IF B=FALSE THEN FRINT " means you didn’t type 3" ELSE FRINT
" means you typed 3"

1500 FRINT:GOTO 1100

1600 END

Line 1000 prints the values of GRiDEASIC’s two Boolean constants.
Whenever you use TRUE or FALSE, vou use the constant’s value.

For example, depending on the value of A, line 1200 does one ot
two things. It either assigns -1 to B (TRUE) or applies NOT to
TRUE, changing the -1 to its opposite, a zero (0). MNote that
although the program never assigns "FALSE" to the variable B, it
can evaluate B as "FALSE" (line 1400), 1f in line 1200 B proves
to be "NOT TRUE."

(%4
LA

(]

Arithmetic and Logic

FIX

The FIX tunction converts an expression to an integer.

FORMAT
FIXiexpression)

NOTES

Thie function converts an expression to an integer by removing
all numbers to the right of the decimal point. The difference
between this function and the CINT and INT functions is that FIX

does not round negative numbers down. Thus -2.3 and 2.9 both
become -Z.

Thus FIX (an "import" from other BASIC's) works like GRiDBASIC's
own TRUNC function. See the section at the beginning of this
chapter, comparing the different integer functions. Also see the
TRUNC function later in this chapter for more details.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=FIX(Decimal)

1200 PRINT "The FIX integer is "jAnswer :FRINT
1300 GOTO 1000

5-14 GRiDBASIC Reference Manual

INT

FORMAT

NOTES

EXAMPLE

The INT function converts an expression toc an integer.

INT {expession)

GRi1DBASIC performs the conversion by rounding down the fractional
portion of the number. Thus a positive whole number remaincs the
same regardless of the value of the number to the right of the
decimal point.

In the case of negative numbers, however, INT rourds the number
to the next smaller whole number. Thus with INT -2.3, -2.5, -Z.9
all become -3. Because of this acticn, INT is =zometimes referred
to as a "floor function."

GRiDBASIC includes INT for compatibility with other BASIC's. See
the article on integer functions at the beginning of this chapter
for more information.

1000 INPUT "Enter any number and confirm", Decimal
1100 Answer=INT (Decimal)

1200 PRINT "The INT integer is "3 Answer: FRINT
1300 GOTO 1000

Arithmetic and Legic 5-=15

INTEGER DIVISION <(\N)

FORMAT

NOTES

EXAMPLE

The integer division operator.

dividend \ divisor

Integer division acts like ordinary division (/) in that it
delivers a quotient. Unlike, ordinary division, it does not
issue a remainder. Thus the operation

PRINT S5\2

vields 2, not 2.5. NOTE: You make a back slash, the integer
division sign, by pressing the CODE-SHIFT-® combination.

The MOD function is just the opposite of integer division; it
prints the remainder, but not the quotient. (See MOD later in
this chapter.)

1000 INFUT "Divide 51 by what number"; Divisor

1100 LET Buotient=51\Divisor

1200 LET Remainder=51 MOD Divisor

1300 FPRINT "The quotient is "jBuotient; " with a remainder of
":Remainder

1400 PRINT: GOTO 1000

1500 END

This example shows the integer division guotient and the MOD
remainder that result from dividing 51 by vour input divisor.
The second example asks you for both the dividend and the
divisor: it then calculates the results from floating point
division, integer division, and MOD.

1000 INPUT; "Dividend":;N
1100 INPUT * Divisor";D
1200 PRINT "FPDiv=";N/D,
1300 PRINT "IntDiv="3;N\D,
1400 PRINT "MOD="3;N MOD D
1500 PRINT: GOTO 1000
1600 END

a-1é6 GRiDBASIC Reference Manual

LOG

FORMAT

NOTES

EXAMPLE

The {(natural) logarithm function

LOG(expression)

This

function returns the natural logarithm of an expression.

The value of the expression must be a positive number greater

than

1000
1100
1200
is":
1300
1400
1500
1600
1700
1800

This
(the

zZero.

INPUT "An exponent please";Anex

LET Answer 1=EXFP (Anex)

PRINT "The natural log’s value raised to the power ";Anex:"
PRINT Answerl: PRINT

Answer2=L0G (Answer1)

PRINT "The natural log of this number is "jAnswerZ: PRINT
Answer3=L0G10 (Answer1)

FRINT "Its log to the base 10 is ";Answer3:PRINT

GOTOD 1000

END

example calculates the exponential of a number, its inverse
LOG), and finally, the common logarithm (to the base 10).

Arithmetic and Logic o=17

LOG1O

Logarithm to base 10,

FORMAT
LOG1O(expression)

NOTES
This function returns the logarithm to the base 10 of an
expression (NOTE: Natural logarithms have a base of 2.718). The
log to the base 10 is the number to which you have to raise 10 to
get a particular number. Thus log of 1000 is 3, because 103
yields 1000
The value of the expression must be a positive number greater
than zero.

EXANPLE
1000 INPUT "An exponent please";Anex
1100 LET Answer 1=EXF (Anex)
1200 PRINT "The natural log’s value raised to the power ";Anex;"
is": PRINT Answerl: PRINT
1300 Answer2=L0G(Answerl)
1400 PRINT "The natural log of this number is "jAnswer2: PRINT
1500 Answer3=L0G10 (Answerl)
1600 PRINT "Its log to the base 10 is ";Answer3:PRINT
1700 GOTO 1000
1800 END
This example calculates the exponential of a number, its inverse
(the LOG), and finally, the common logarithm (to the base 10).

5-18 GR1DBASIC Reference Manual

MOD

FORMAT

NOTES

EXAMPLE

The modulo operator.

dividend MOD divisor

The modulo function (MOD) prints the remainder of a division

operation, but not the quotient. This makes it the opposite of

the integer division operation, which prints the guotient, but
not the remainder. (See Integer Division earlier in this
chapter.)

MOD rounds its operands to integers. It then performs floating

point division and throws away the resulting quotient.

1000 INPUT "Divide 31 by what number"; Divisor

1100 LET Buotient=51\Divisor

1200 LET Remainder=51 MOD Divisor

1300 FRINT "The quotient is ";Quotient; " with a remainder of
":Remainder

1400 PRINT: GOTO 1009

1500 END

This example shows the integer division quotient and the MOD
remainder that result from dividing 51 by your input divisor.
The second example asks you for both the dividend and the
divisor; it then calculates the results from floating point
division, integer division, and MOD.

1000 INFUT; "Dividend";N
1100 INPUT " Divisor";D
1200 FRINT "FPDiv="3;N/D,
1300 FRINT "IntDiv="3;N\D,
1400 PRINT "MOD="3;N MOD D
1500 PRINT: GOTO 1000
1600 END

Arithmetic and Loagic o=

19

NOT

EXAMPLE

The logical operator for negation.

NOT expression

NOT is a unary operator that reverses the truth value of the
operand (expression) it addresses. The NOT truth table (Table
5-3) below illustrates this.

A NOT A
=21 0
0 =3

Table S-3. The NOT Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF NOT(A=3 AND B=4) THEN FRINT "Try again" ELSE PRINT "You
win"

1300 PRINT:GOTO 1100

1400 END

Compare this example to the example for AND. To get the same

evaluation, the results ("Try again"” and "You win" are reversed.

This suits NOT's action on truth values. Also see the logic
examples under "Logical Operators" in Chapter Two.

9-20 GRiDBASIC Reference Manual

O

OR

FORMAT

NOTES

EXAMPLE

The logical operator for disjunction.

expressionl OR expression?2

OR links two expressions and issues a true when both expressions
evaluate as true or when just one evaluates as true. Both
expressions must be false for OR to issue a false. See Table 5-4
below. Compare this action with XOR (Described at the end of
this chapter), which yields a true only when just one of the two
expressions is true.

A B AOR B
=1 =1 =1

=1 0 -1

v} = =1

0 0 0

Table 5-4. The OR Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 OR B=4 THEN PRINT "You win'!" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

You win if you type 3 as the first number of the pair, or if you
type 4 as the second number, or if you type both correctly (3,4).
Also see the logic examples under "Logical Operators" in Chapter
Two.

Arithmetic and Logic a-21

The pi constant.

FORMAT
PI
NOTES
PI is not a function, but the mathematical constant representing
the ratio of the circumference to the diameter of a circle.
GRiDBASIC keeps FI equal to
3. 14159265358979
EXAMPLE

1000 PRINT "Note: Pi equals "; FI: PRINT

1100 INPUT "Enter the radius of a circle and confirm"; Radius:
PRINT

1200 Circ=2¥PI1X¥Radius

1300 PRINT "The circumference of the circle is "3;Circ: PRINT
1400 Area=PIl¥Radius"2

1500 PRINT "The area of the circle is "; Area: PRINT

1600 GOTO 1100

This example puts the PI function to work in two common formulae,
those for the circumference and area of a circle. It also prints
the value of pi (see line 1000).

5-22 GRiDBASIC Reference Manual

RANDOMI ZE

FORMAT

NOTES

EXAMPLE

RANDOMIZE seeds the RND number generator.

RANDOMIZE [expressionl

This statement gives the random number generator a specific seed
to work with. HRND takes each seed and from it creates a known
series of numbers. Therefore, placing RANDOMIZE before a RND
statement yields a repeatable series of numbers.

RANDOMIZE without an expression, sends the RND function back to
the realtime clock for its seed. See the RND statement,
described next, for further details on random numbers.

1000 RANDOMIZE 101

1100 INPUT "Loop times"j;Number
1200 PRINT: PRINT

1300 FOR X = 1 TO Number

1400 PRINT ,10%RND(1)

1500 NEXT X

1600 PRINT: PRINT

1700 GDTO 1000

1800 END

In this example, the expression "101" causes the same series of
random numbers to print, no matter when or where you use it. Try
other expressions. You can treat these expressions as if they
were labels for certain series.

Arithmetic and Logic o-23

RND

The RND function returns a random number between O and 1.

FORMAT

RND (expression)

NOTES

The RND function can generate three types of series of random
number each time you RUN a program, depending on the type of
expression you give it. The three expressions and their products
are:

® A number less than zero (-1). This expression reseeds the
random number generator every tenth of a second from the
realtime clock. Thus it has the effect of producing groups of
two or three random numbers. See Figure 5-1.

@ Zero. This takes the most recent number generated in the
current series. If produced by a loop, the same number occurs
repeatedly.

® A number greater than zero (+1). A sequence of random
numbers.

Figure 5-1 below shows a typical run of the three types. You can
find the program that generated these numbers in the Example
section below.

When the argument < @ ...
0.0831158922713
0.99860044251 164
9.99860044251164
B.95060044251164
0.898069733732007

When the argument = @ ...
9.89806973373007
0 .89806973273007
8.898069733720087
©.89306373372007
@.589806973373007

When the argument > @ . . .
0.67539482719158
8.13185328820935
8.74765207293812
8.41618982223239
0.81486228732738

Figure 5-1. Three Types of Random Numbers

NOTE: To create a repeatable series of random numbers, place the

9-24 GRiDBASIC Reference Manual

RANDOMIZE statement (See above, this chapter) with the RND
function.

To create a random whole number, simply multiply the RND function
by some integer. The integer gives the uppermost value the
function can return. Remember: RND returns numbers between © and
1. Ten times one equals ten, the largest number that line 1300
below permits. The program in Figure 5-2 returns the column of
figures at its right.

1000 INPUT "Loop times":;Number
1100 PRINT: PRINT

1200 FOR X = 1 TO Number

1300 PRINT, 10%¥RND(1)

1400 NEXT X

1500 PRINT: FRINT

1600 GOTO 1000

1700 END

L@B3242327292E7E
.B2151522687434
. 8295567254139

9269692351 1482
.@4562447547112
.91728454718853
.838854084745556
452887 76233335
LE9520163761349
.4E7EB2084478293
.443592042420031
T191577619913

L 73334855235523
. 8388647287 70a38
.13861722743572
LI217E8aTZTES534
.44151973352691

L RN e e s Rl) e s ST YN Lo R

Figure 5-2. A Program and Series of Random Numbers

To turn a whole number into an integer, we recommend submitting
the RND function to either the ROUND or TRUNC function. In
particular, when you want a range extending from 1 to n, try

TRUNC (expression) +1

If you want a number in the range of 0 to n or in a range of
numbers (nl1 to n2), choose

ROUND {(expression)
These two functions act differently to create an integer. ROUND
rounds all decimals of .5 or greater upward. TRUNC, on the other

hand, just cuts the decimal portion off. Table 5-5 below gives
several examples you can use as models.

Arithmetic and Logic 225

EXAMPLE

Range of Integers Example Function

0 to 10 ROUND (10XRND (1))

1 to 10 ROUND (9¥RND (1) +1) or
TRUNC (10%RND (1) +1)

1 to 11 ROUND (10XRND (1) +1) or
TRUNC(11%RND(1)+1)

87 to 95 ROUND (BXRND (1) +87)

Table 5-5. A Table of Integer Ranges and Functions

The Example section contains a program illustrating ranges 0 to
10 and 87 to 95. In the last range (87 to 95), we didn’t
multiply RND by 87, because that would produce all the numbers
from O to 87. Instead, we multiplied by the width of the range
(8) and added the beginning number of the range.

1000 PRINT: PRINT "When the argument < O ..."
1100 FOR X = 1 TO S

1200 PRINT RND(-1)

1300 NEXT X

1400 PRINT: PRINT "When the argument = 0 ..."
1500 FOR Y =1 TD S

1600 PRINT RND(Q)

1700 NEXT Y

1800 PRINT: PRINT "When the argument > 0 ..."
1900 FOR Z = 1 TO S

2000 PRINT RND(1)

2100 NEXT Z

Running the above example shows the difference that RND's
expression makes. Figure 5-1 shows a typical printout produced
by this program. You can change the lengths of any of the loops
to create larger or smaller sample sizes. The second example
(see below) shows how you can achieve different ranges of

integers by manipulating RND with TRUNC, ROUND, and additional
numerals.

S5-26 GRiDBASIC Reference Manual

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

This

REM This pgm creates RND integer ranges
PRINT: PRINT "For the range | to 10 ..."
FOR X =1 70 12

PRINT TRUNC(10XRND(1)+1),

NEXT X

PRINT "For the range 0 to 10..."

FOR Y =1 70 12

FRINT ROUND{(10¥RND(1)),

NEXT Y

PRINT "For the range 87 to 95..."

FOR Z =1 TO 12

PRINT (ROUND(BXRND(1))+87),

NEXT Z

program produces the output like the one in Figure S5S-3.

For the range 1 to 18 ...

6 3 2 2
3 B 3 3
7 B 8 S
For the range @ to 10. ..

) 8 2

(5] 9 18 g
6 7 7 [
For the range €7 to 95. ..

88 94 92 ol
94 g7 93 95
33 91 e g8
Figure 5-3. Output of RND on Three Numeric Ranges

Arithmetic and

Logic

9-27

ROUND

The ROUND function.

ROUND (expression)

NOTES

The ROUND function takes a decimal number and converts it to an
integer. If the decimal portion is .5 or greater the integer
increases by one. If it 1s less, it drops to the next lower
integer. Negative numbers are rounded (-3.5 becomes -4).

NOTE: This function is identical to the GRiDBASIC’s CINT function
described earlier in this chapter. The existence of both
functions enhances the compatibility of GRiDBASIC with other
BASIC's. See the section at the first of this chapter on Integer
Functions.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=ROUND (Decimal)

1200 PRINT "The ROUND integer is "jAnswer :PRINT
1300 GOTOD 1000

o-28 GRiDBASIC Reference Manual

SGN

FORMAT

NOTES

EXAMPLE

The sign function.

SGN (expression)

This

function returns the algebraic sign of an expression. A

positive expression returns 1, negative expressions return -1,
and zero returns 0.

1000
1100
1200
1300
1400
1500
1600

This

PRINT

INPUT; "The sign of"; Number

ON SGN(Number)+2 GOTO 1300, 1400, 1500
PRINT " is minus (-)": GOTO 1000

PRINT " is zero (no sign)": GOTO 1000

PRINT " is plus (+)": GOTO 1000
END
example tests for sign of number given it. The SGN function

returns the appropriate number. The "+2" raises this number to a
1, 2, or 3 — all numbers that the ON GOTD statement can use.
The result points to the correct answer line.

Arithmetic and Logic a=29

SIN

The sine function.

FORMAT
SIN(expression)

NOTES
This function takes an expression representing an angle in
radians and returns the sine of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

EXAMPLE

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 Rads=Anglex (P1/180)

1200 Calculation=SIN(Rads)

1300 PRINT "The sine of "3;Angle:" degrees is "; Calculation:
PRINT

1400 GOTD 1000

530 GRiDBASIC Reference Manual

sSarR

FORMAT

NOTES

EXAMPLE

The square root function.

SOR (expression)

This function returns the square root of an expression. The
value of the expression must be zero or greater.

1000 INFUT; "Square root of": Number
1100 FRINT " is "3 SBR(Number)

1200 PRINT: PRINT

1300 GOTO 1000

1400 END

Arithmetic and Logic

TAN

The tangent function.

FORMAT
TAN (expression)

NOTES
This function takes an expression representing an angle in
radians and returns the tangent of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

EXAMPLE

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 Rads=Anglex (PI/180)

1200 Calculation=TAN(Rads)

1300 PRINT "The tangent of ";Angle;" degrees is "; Calculation:
PRINT

1400 GOTO 1000

5-32 GRiDBASIC Reference Manual

TRUE

FORMAT

NOTES

EXAMPLE

The Boolean constant for true.

TRUE

The constant TRUE has a value of -1. Statements can interact
with it in a number of ways. You can assign its value to
variables, operate it on it logically, and print it. The program
below does all these things.

1000 PRINT "True="3;TRUE; " and False=";FALSE

1100 INPUT "Type the number 3"; A

1200 IF A=3 THEN B=TRUE ELSE B=NOT TRUE

1300 PRINT BE;

1400 IF B=FALSE THEN PRINT " means you didn’t type 3" ELSE PRINT
" means you typed 3"

1500 PRINT:GOTO 1100

1600 END

Line 1000 prints the values of GRiDBASIC’s two Boolean constants.
Whenever you use TRUE or FALSE, you use the constant’s value.

For example, depending on the value of A, line 1200 does one of
two things. It either assigns -1 to B (TRUE) or applies NOT to
TRUE, changing the -1 to its opposite, a zero (0).

Arithmetic and Logic a~33

TRUNC

The truncate function.

FORMAT
TRUNC (expression)

NOTES
The TRUNC function converts a number (whether positive or
negative) into an integer not by rounding it, but by chopping off
anything to the right of the decimal point. TRUNC acts like
another integer function, FIX. See the article on integer
functions at the first of this chapter. Also compare TRUNC to
the FIX and ROUND functions.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=TRUNC (Decimal)

1200 PRINT "The TRUNC integer is "j;Answer :PRINT
1300 GOTO 1000

5-324 GRiDBASIC Reference Manual

XOR

FORMAT

NOTES

EXAMPLE

The exclusive-OR logical operator,

expressionl XOR expression2

XOR yields a true if just one just one of the expressions
evaluates as true, but not if both or neither are true. Table
o-6 shows this.

A B A XDR B
=1 =1 0
=1 0 =1
0 =1 =1
Q 0 0

Table S-6. The XOR Truth Table

1000 PRINT "Separate the two numbers with a comma:PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 XOR B=4 THEN PRINT "You win'" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

With XOR you can only win by getting just one of the pair of
numbers correct —- either the I in the first place or the 4 in
the second. If you type "3,4" the program tells you to "Try
again. "

l'.ll'l
o

o

Arithmetic and Logic

CHAPTER SIX: STRING FUNCTIONS

This chapter describes GRiDBASIC's string functions. String functions perform
operations on sequences of characters specified in programs. A string is any

sequence of characters. All of these functions require an input parameter or

argument enclosed in parentheses.

A word on nomenclature. A number of the string function names end with the
dollar sign ($). Most programmers "pronounce" this symbol in either of two
ways. Some say "dollar"; others say "string." Thus the statement LEFTS is
called both "left dollar" and "left string." Take your pick.

String Functions 6-1

ASC

The ASCII function,

A 4
FORMAT
ASC(string$)
NOTES
ASC takes the first character of string$ and returns that
character’s ASCII code (a decimal, numeric value). This is the
inverse of the CHR$ function, which converts an ASCII code to a
character (see below). "ASCII" stands for "American Standard Code
for Information Exchange."”
If the string has a length of zero (no characters in the string), an
error occurs.

EXAMPLE

b6-2

1000 INFUT "Press a key and confirm",Text$

1100 LET Code=ASC(Text$)

1200 LET Letter$=CHR% (Code)

1300 PRINT "The ASCII code for "jLetter$;" is "j;Code

1400 PRINT

1500 GOTO 1000 N/
1600 END

This example converts text (including numbers, and punctuation, and
other characters into their ASCII codes. Note that though the input
variable (Text$) is a string variable, ASC returns a numeric value,
because each ASCII code is a number.

GRiDBASIC Reference Manual

CHRsS

The character string function.

FORMAT
CHR$ (expression)

NOTES
This function converts an expression representing an ASCII code (in
decimal) to its one character equivalent. The expression must be a
value in range of 0 to 255. This function is the inverse of the ASC
function, which performs ASCII-to-numeric conversion.

EXAMPLE

1000 INPUT "Enter an ASCII code and confirm", Ascode
1100 LET Letter$ = CHR$ (Ascode)

1200 FRINT Ascode;" is the ASCII code for ";Letter$
1300 PRINT

1400 GOTOD 1000

1300 END

This program takes any ASCII code (in decimal) from O to 255 and
prints the character represented by the code. Note that line 1100
assigns the resulting character to a string variable, Letter$
{whether or not it’s a number).

String Functions 6-3

INSTR

The in string function.

FORMAT

INSTR ([expression, lsourceString$, findString$)

NOTES

The INSTR (often called "in string") function locates a specified
string (findString$) within another string (sourceString$) and
returns the character position of the first occurence of the string.
INSTR differentiates between upper and lower case; specify
characters accordingly.

The optional expression tells the function how many characters to
skip (from the left) before before beginning its search. Include
this expression when you want to move past the string just located
to find another occurence of the same string.

INSTR returns a zero (0) when:

@ The value of expression is greater than the length of
sourceString$

@ SourceString$ is null
e It cannot find findString$.

I+ findString$ is null, INSTR returns 1 or expression (if included).

EXAMPLE

1000 LET Sample$="The dollar the snowman the Cat"
1100 LET A$="he": Let B$="the": Let C$="man": LET D$="doll": LET
E$="cat": LET F=6

1200 LET Position1=INSTR(13,S5ample$,E$)

1300 LET Position2=INSTR("weather",B$)

1400 LET POSITION3=INSTR(F, "Woebegone","e")

1500 LET POSITION4=INSTR (Sample$, "now")

1600 FPRINT Positionti

1700 PRINT Position2

1800 PRINT Position3

1900 FRINT Position4

2000 END

6-4 GRiDBASIC Reference Manual

This program yields four numbers:
24
4
9
17

The example illustrates two facts. First, expression, findstrings,
and sourcestring$ can occur as variables and/or values (whether
string or numeric) in the same specification. Second, expression
views the number of characters in sourcestring$ as absolute.

For example, the expression in line 1400 tells INSTR to position
itself at the "g" in "Woebegone" and search for "e" (one character
past the second"e"). In this case, it returns 9 -— the position of
the last "e" -- not 3, which it would if it started counting at one
from each position.

Note too, that if you searched for E$ (cat) within Sample$, INSTE

would return a zero. The reason: The "Cat" within Sample$ has an
uppercase "C."

String Functions 6-5

LEFTsS

FORMAT

NOTES

EXAMPLE

The left string function.

LEFT$(string%,expression)

This function returns the leftmost character(s) from a specified
string. The function counts in from the left end of the string by
the number of characters specified in the expression. For example,

LEFT$ (Compass Computer system,7)
yields the string "Compass."

If the value of expression is greater than the length of the string,
the entire string is returned. If the value of expression is zero,
a null string (no characters) is returned.

1000 LET Sample$="dollar toy pizza book tree home"

1100 PRINT "The string is "";Sample$;"™"

1200 PRINT -

1300 INPUT "Take how many letters from the left": Number
1400 LET Someletter$=LEFT$ (Sample%,Number)

1500 PRINT "LEFT$(Sample$,";Number:") is '"; Someletters$;"""
1600 GOTO 1200

6-6 GRiDBASIC Reference Manual

LEN

FORMAT

EXAMPLE

The length function.

LEN returns the number of characters in a specified string and

thereby its length. All characters in the string., including signs,
decimal points, blanks, and non-printable characters, are counted.

LEN(string$)

1000 INFUT "Type some characters and confirm"; Stuff$

1100 PRINT "You entered "; LEN(Stuff%):" characters that time."
1200 FRINT

1300 GOTD 1000

1400 END

This example shows that the LEN function counts the number of

characters in a string. (Also see the example for the STR$
function.)

String Functions

&=7

MIDs$

FORMAT

NOTES

EXAMPLE

The mid string function.

MID$ (string$,I[,J1)

The MID$ function returns a specified portion of a string. The
parameter I specifies the first character (counting from the left
end of the string) that MID$ returns. The optional parameter J
specifies the total number of characters the function should return.
For example,

MID% (Compass Computer system,9,8)
yields the string, "Computer".

If J is omitted, or if there are fewer than J characters to the
right of the Ith character, all characters from I to the right end
of the string will be returned. If I is greater than the length of
the string or if J is zero, MID$ returns a null string, that is, a
string with no characters in it.

1000 LET Sample$="dollar toy pizza book tree home"

1100 PRINT "The string is ""j;Sample$;"’"

1200 PRINT

1300 INPUT "Go how far in from the left"; Number

1400 INPUT "And take how many letters";Letters

1500 LET Someletter$=MID% (Sample$,Number,Letters)

1600 PRINT "MID$(Sample$, ";Number; ", "3 Letters;") is *";
Someletters$; """

1700 GOTO 1200

1800 END

6-8 GRi1iDBASIC Reference Manual

RIGHTS

NOTES

EXAMPLE

The right string function.

RIGHT$ (string$,expression)

This

function counts from the right end of a string of characters to

return a number of characters. The expression returns the number of
characters specified by expression. If the value of expression is
greater than the length of the string, the entire string is
returned. If the value of expression is zero, a null string (no
characters) is returned.

1000
1100
1200
1300
1400
1500
1600

LET Sample$="dollar toy pizza book tree home"

PRINT "The string is "":;Sample$;"""

FRINT

INFUT "Take how may letters from the right": Number

LET Someletter$=RIGHT$ (Sample$,Number)

PRINT "RIGHT¢(Sample%$,";Number:") is ""; Someletteré;"""
GOTO 1200: REM if you’re going to do this a lot, GOTO 1100

instead

String Functions a=9

SFPACES

The space strinag function.

FORMAT
SPACES$ (expression)

NOTES
The SPACE$ function returns a string consisting of spaces. The
expression specifies the number of spaces.

EXAMPLE

1000 INPUT "How many spaces": Number

1100 LET Blank$=SPACE$ (Number)

1200 PRINT Number: " spaces lie between the asterisks": PRINT
"X";Blank$;"x"

1300 PRINT

1400 GOTO 1000

1500 END

6-10 GRiDBASIC Reference Manual

STR$

FORMAT

NOTES

EXAMPLE

The S-T-R string function.

STR$ (expression)

The STR$ function converts the value of a numeric expression into a
string, so that you can perform strings (rather than numeric)
operations on it.

1000 INPUT "Type a number"; Numberl

1100 INPUT "And another to multiply it by"; Number2

1200 LET C$=STR$ (Number 1¥Number2)

1300 PRINT "The answer is ";C%$;". Length of this string is "j;LEN(C%)
1400 PRINT

1500 GOTO 1000

1600 END

This example takes two numbers and converts their product to a
string (line 1200). The fact that LEN, a string function operates
on product, proves this i1s a string, not a numeric, constant (line
1300).

String Functions 6-11

STRINGS

FORMAT

NOTES

EXAMPLE

The string function.

STRINGS (expression, ASCIIcode)
STRINGS (expression, string$)

This function returns a string whose characters all have the same
ASCII code. The value of expression defines the length of the
string.

You specify the character returned by giving its ASCII code (in
decimal) or by giving a string. STRING$ returns only the first
character of this string.

1000 CodeSample$=STRING$(10,42)

1100 PRINT "The string using an ASCII code is "j;CodeSample$

1200 PRINT

1300 LET A$="Hello"

1400 FirstChar$=STRING$ (10,A%)

1500 PRINT "The sample taking the first character is "; FirstChar$
1600 END

The example shows the STRING$ function with both arguments. Line
1000 takes the ASCII argument and prints 10 asterisks in line 1100.
Line 1400 takes the first character of A$ (Hello) and prints it 10
times in line 1500. NOTE: the 10 in both print statements is the
first argument in each STRING$ definition.

6=-12 GRiDBASIC Reference Manual

VAL

FORMAT

NOTES

EXAMPLE

The value function.

VAL (string%$)

This function returns the numeric value of a specified string. The
string should comprise nothing other than leading blank(s), a sign,
and a number (the blank(s) and siagn needn’t be present).

VAL strips off any leading blanks from the string. If the first
non-blank character is anything except a plus sign (+), minus sign
{(-), or a numeric digit, VAL returns a zero (0). If the string
contains anything besides numeric digits, it also returns a zero
(0.

1000 INFUT "Type a number"; Numberi

1100 INFUT "And another to multiply it by"; Number2

1200 LET C%=STR$% (Number 1¥Number2)

1300 PRINT "The answer is ";C%:;". Length of this string 1s ";LEN(CS
1400 LET Result=VAL (C$) /Number1

1500 PRINT "Dividing by the first vields the second: "j;Result

1600 FPRINT

1700 GOTO 1000

1800 END

This example turns a number into string (line 1200). and engages VA
in line 1400 to turn the string number back into a number that
numeric operators can handle. NOTE: VAL's counterpart ics STR$ (see
line 1200).

String Functions 6-1

)

L

CHAPTER SEVEN: INPUT/OUTPUT STATEMENTS

The input/output statements discussed in this chapter transfer data to and
from memory, the realtime clock, the keyboard, and the screen.

For
information on sequential file 1/0, see Chapter Eight. For random access file
1/0, see Chapter Nine.

Input/Output Statements =1

comMmmMmaAa

NOTES

The comma character (,) formats output to the screen.

expression, expression(,]

Whether in an INPUT statement or a PRINT statement, the comma
simultaneously links elements in a series and keeps them separate.
The comma differs from the semicolon in that it causes each element
to print at predetermined tab position. The comma places each

expression in one of four absolute fields -- at columns 0, 15, 30,
and 45.

Within a PRINT statement, a comma following the last element in a
list causes suppression of the carriage return and line feed
characters that the PRINT statement normally issues after its

expression(s). Instead, the expressions print at the appropriate
tab field.

Placing the comma before the first expression in a PRINT statement
causes the expression to print at the second field. Likewise, two
commas preceding an expression cause printing at the third field,
and so on. For example:

1800 PRINT ,,"Third tab"

Flacing the comma between an INPUT string and its variable,
suppresses the guestion mark (?) normally issued by the INPUT
statement. For example:

1500 INPUT "Your name please", Name$

You can request multiple items with an INPUT statement, if you
separate the statement’s variables with commas. For example,

1600 INPUT "Please enter three numbers", A, B, C

NOTE: The response to this must also separate each item with a
comma. For example,

54, 98.01, 1
When sending data to the Epson printer, you must supply tab position

information for the comma to work correctly. Otherwise, you won’t
get the spaces between columns that you expect.

7-2 GRiDBASIC Reference Manual

EXAMPLE

You must follow the FRINT# command with the file tag number, an ESC
D (represented by CHR$(27)+"D") and the column number of each tab
preceded by the CHR$ statement. Concatenate these tab positions
with the plus sign (+). All such statements must end with the null
character, CHR%(0). Do NOT exceed an 80-character line. An example
command assigning 15 character-wide tabs follows:

FRINT# 1, CHR$(27)+"D"+CHR$ (15)+CHR® (30) +...+CHR%(Q)

1000 INPUT "Your name please:", Name$

1100 INFUT "Three numbers", A, B, C

1200 FRINT

1300 PRINT "Hello there", Name$, "3", "Albert"
1400 FPRINT "A very long string", "of",

1500 PRINT A, B, C

1600 PRINT ,,"Third tab"

1700 END

This example illustrates what commas can do in both INFUT and FRINT
statements. The comma in Line 1000 suppresses INPUT’s question
mark. In line 1100, commas separate variables for INPUT.

Line 1300 shows the tab zones set up by the comma. Note in Figure
7-1 below that when a string exceeds the 15-character width set up
by the comma that the next string appears in the next zone over.
The first string does not collide with the second.

The comma at the end of line 1400 suppresses the carriage
return—-line feed at the end of that line, so that line 1400 and
1500°s tab zones become continuous. The two commas before the
expression in line 1600 push the expression one tab each so that the
string "Third tab" prints at the third tab.

Your name please: John
Three numbers 8,-912765, 0081243

Hello there John 3 Flbert
A very long string of 2
-912765 B.0021243

Third tab

Figure 7-1. Examples of Comma Formatting

Input/Output Statements 7-3

DATES

The date function.

FORMAT

DATE$

NOTES

DATE$ returns the current date from the Compass Computer system’s
real-time clock. The date is an eight character string in the form
mm/dd/yy where mm is the month (00 to 12), dd is the day of the
month (00 through 31) and yy is the year (00 through 99). NOTE:
These characters are string, not numeric characters. For the
program to use them numerically, you must convert them to numbers
(see Chapter Six, the VAL statement and the example below).

EXAMPLE

1000 PRINT "The date is "; DATE$

1100 LET Month$ = LEFT$(DATES$,2)

1200 IF LEFT$(Month$,1)="0" THEN LET Month$=RIGHT®(Month$,1)
1300 PRINT "The number of the month is "; Month$

1400 LET MONTH=VAL (Month$): LET A$="The name of the month is "
1500 ON Month GOTO

1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700
1600 PRINT A$;"January":END 4
1700 PRINT A%;"February":END

1800 PRINT A%; "March":END

1900 PRINT A%;"April":END

2000 PRINT A%;"May":END

2100 PRINT A%;"June":END

2200 PRINT A%$;"July":END

2300 PRINT A%;"August":END

2400 PRINT A%;"September":END

2500 PRINT A%:"October":END

2600 PRINT A%;"November":END

2700 FRINT A%$: "December":END

This example prints the current date in line 1000. It then removes
the "0" from the front of all single digit month numbers and prints
the number of the month (lines 1100-1300). The rest of the example
uses the ON GOTO statement so that the month®s number can cause the
month*s name to print.

To do this, we convert the month numeral-as-string character to a
numeral with the VAL statement (see Chapter 6). You can incorporate
this program as a subroutine where you want a nicely formatted date.

A\ 4

7-4 GRiDBASIC Reference Manual

