
\Eii

(1

\iiE

6RioBASIC REFERENCE HANUAL

March 9, 1983

Model Number 2lt:)I()-4t:l

COPYftl6HT
2535 Barci PAv:::: GRID 5y5tem5 Cc}rporat]on
MOLintain View. CA 94043
(415) 961-4800

Manual Name : 6RiDEIASIC ftef erenc:e Maniial
Model Niimber 21020-40
Issue date: Marc:h 9. 1985

Nc] part of this piiblic:ation may bE reprodiiced. stc}red in a retrieval 5ystEm,
c}r transmittecl, in any fc]rm or by any means, electronic, mec:hani[al,
Photc}copy, recording, or c)therwi5e. withoLit the prior written perml55ion C)+
GRiD Systems Corporation.

The infclrmation in this documEnt is sLibjec.t to change withoiit notice.

NEITHER BF{iD SY§TEM§ CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRE§§ED 0R

IMPLIED WARRANTY, INCLUDING. EIUT NOT LIMITEI) T0 THE IMPLIED WARRANTIES OF

MERCHANTABILITY, QUALITY, OR FITNESS FOR A PARTICULAR PuRPO§E. 6RiD §y5tem5
CC}rporation makes r`o representation a5 to thE act.urac:y or aclequac:y c}f thls
dc}[l`ment. 6Ril) §ygtems Corporation has nc) obligation to update or keep
ciirrent the informaticin I:c)ntained in this document.

GRil) System Corporation'5 Software products are copyrighted by and Shall
remain the property of GftiD Systems Corporation.

UNI)Eft N0 Clf{CUM§TANCE§ WILL t3RII) SY§TEM§ CORPORATION EIE LIABLE FOR ANY LOSS 0fl
OTHER DAMABE§ ARI§INB OUT 0F THE USE 0F THIS MANUAL.

The follc}wing are trademarks of GRiD Systems [orporation: 6Ril), NAVIGATOR,
COMPA§§ CEN"AL, COME.A§5 COMPUTEFi, and LEVEFiA6ED LEARNING.

F"

H

u

•-I

r

-,

TABLE 0F CONTENTS

GF3il)BASIC COMMAND SUMMAF{Y

AB0llT THIS BOOK

CHAPTEfi ONE: 6ETTIN6 STARTED

What ls BF!iDBA§IC
Invoking 6RiDBASIC
The Programming (Indirect) Mode

Running, Continuing, and Stopping a Program.
The E§Cape Key
Erasing Line(s)
Other Commands

The Direct Mode ,................
Aboiit the GRiDBA§IC Environment

Layout of the GRiDBA§IC Screen
Lines and Line Numbering . . .

Automatic: Line Numbering .
Manual Line Numbering . .
F3eni`mber i nq
Multiple Statements . . .
Reformatting yc]ur Listings

I-1
1-1

1-2
1-3
1-3
I-3
1-3
i-4
1-4
i-4
I-6
1-6
1-6
i-6
1-7
I-7

CHAPTEB TWO: GENERAL INFORMATION AElolJT GfiiDEIA§]C

§ynta>: I)iagramg . . .
Reserved Words . . .
Constants......

§trina Constants
Numeric Con5tant§

Var i abl es
Array Variable§
Expres5ic)ne and Operators

Order of Precedence and Ni`meric Operators.
Relational Operators ,.
Logical Operatc]r5,....
String Operators

File Naming Conventions
File I:ind5 -......,........
Oel i mi ters

CHAPTER THREES ASSIGNMENT AND DEFINITION §TATEMENT§

DIM........

LET........
REAI) I)ATA [RE§TORE]
A.EM........

CHAPTER FOUR: STATEMENTS THAT CONTROL PROGRAM FLOW

END........
FOR T0 NEXT [§TEP]
60SIJB RETURN . . .
60TO.......
IF THEN [EL§EJ . .
ON 60T0 and ON 60SUB
STOP........
WHILE WEND

CHAPTER FIVE: ARITHMETIC AND LOGIC

INTEGER F.UN[TI0NS
ABS (Absolute) .
ACOS (Arc cosine)

u

iiEI

A

BIB

ANI) ' -.....

ASIN (Arc: Sine)
ATN (Arc:tangent)
CDEL (Convert to double)
CINT (t:onvert to integer)
COS (Cosine) .,,,,,
CSN6 (Convert to single)
EXP (E}:ponentlal) . . .
FALSE.........
FIX..........

INT (IntEger)
Integer I)ivi5ion (\) . .
Lots (Logarithm)
L0BIO (Log tc] base lil) .
MOD..........

NOT..........
OR...........
PI...........
RANDOM I Z E

RND (Random)
F(OUND.........

§6N (Sign)
SIN (Sine) ® ,.,,,,
SGiR (Square root) . . .
TAN (Tangent)
TRUE..........
TRUNC (Truncate)
XOFt (E>:t:lusive OR) . . .

CHAPTER SIX= STRIN8 FUNCTICIN§

A§C (A§CII)
CHRS (Character string)
INSTR (In string) . . .
LEFTS (Left strinq) . .
LEN (Length)
HIDS (Mid string) . . .
RIBHTS (Right string) .
SPA[ES (Space String)
§TF{S (S-T-R String) .
STF(INBS (String) . . .
VAL (Value)

CHAPTEB SEVEN: INPUT/OUTF.UT §TATEHENT§

COMMA . . .

DATES . . .
INKEYS . .

INPUT . . .
LOCATE . .

PRINT . . .
PRINT lj§IN6
SEMICOLON .

TAB....

TIMES . . .

CHAPTER EIGHT: SEG!UENTIAL FILES §TATEMENT§

CLOSE.......
EOF (End of file) .
EOLN (End of line)
GETFILES.....
INF,UT# '
I NPuTS
KILL........
LOB (Locating) . . .
LOF (Length of file)
OPEN-.......
PRINT,.......
PRINT# USING

CHAPTER NINE: RANI)CIM FILE §TATEllENTS

CVI.CV§,CVD (Convert)
FIELD............
BET.-...........
LOO (Locating)
LOF (Length of f ile)
LSET and R§ET
MKIS.Mh:SS,MKDS (Make string) .
OPEN.............
PUT.............

u

n

ZI

ZiE

CHAPTER TEN: BF{APHICS STATEMENTS

CLEARMS6 . .
DOMENU . . .

DRAWEOX . .

DftAWCHAFts .

DRAW[IF([LE .
DRAWI)OT . . .

I)RAWLINE . .

ERASEB0X . .
ERA§ECIRCLE .
ERA§EI)OT . .
E:f]ASELINE . .

INVERTB0X . .
I NVEftTC I RCLE
INVERTDOT . .
INVERTLINE .
MOVEB0X . . .

STA[KM§B . .

APPENDICES

APPENl)IX Ai ERROR ME§SA6E§

APPENDIX a: A§CII CHARACTERS

I NI)E X

10-4
10-5
i ()-6
10-7
10-9

10-10
1 ('-1 I
10-12
10-14
I (:I - i 5
10-16
1 (:I - i 7

10-18
1 {'- i 9
10-20
10-21
1 0-22

u

LIST 0F FIBURE§

Figure I-1.
Figure i-2.
Figure 1-3,

Figure 2-1.
Figure 2-2.
Figl,re 2-3.
Figu.re 2-4.

Figure 3-1.
Figure 3-2.

Figure 5-1.
Figure 5-2.
Figure 5-5.

viii

The Initial F'rogram Editing §[reen
The Program Editor Screen
Line 1300 after Inserting SHIFT-RETURNS

Example of a Type Mismatch Failure
Example of Faulty Logic
A Wcirkinq Lc)gic
Another Working Logic

Besiilt5 of a Simple READ DATA Program
Re5ult5 of a READ with Two Variableg .,....

Three Types of Randc}m Numbers
A Program and §erie5 of Random Numbers
Output of RNI) an Three Ni`meric Ranges

Examples of Comma Formatting . .
The Input Statement Illustrated .
Haw Format Characters Pad Digits
Basic formatting PPIINT U§INB . .
The PRINT USING Format with Signs
A5teri5k and I}c}llar Formatting .

Worksheet Figures for E>:ample Program . .
PRIN" USING Formatting of Random Numbers

The ThreE. Circle 6raphics
The Three Dot 6raphil=5
The Three Line Grapliics
Bet ore I:LEARM§6
Af ter CLEAF"§B
A Menii Created with I)OMENU
An Example of Df{AWB0X
The DRAWCHAR§ Example
An Example of ERASEEI0X
An E>:ample of INVERTEOX
A STA[k:M§6 Prt]mpt Line

1-2
I-5
I-8

2-9
2-10
2-10
2-11

5-7
3-7

5-24
5-25
5-27

10-5
10-6
10-8

I ()-13
10-17
I,.1-2=`

U

u

A

1

n

LIST 0F TABLES

Table 2-i.

Table 5-I.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

GRiDBASIC Reserved Words

A Table of Integer Functions
The AND Truth Table
The NOT Truth Table
The OR Trutti Table
A Tal]le of Ranges and Fun[tion5
The XOR Truth Table

2-4

Table 9-I. Chcic]5ing MKS and CV Function5 9-5

ORi DEA§IC COMMAND REFERENCE

Aes
ACO§
AND

A§
A§C
ASIN
ATN
CDEL
Cm
CINT
CIEAFiM§G
CLOSE
COMVA
COS
CsO
CVD, CVI, CV§
DATA
DATE,
DIH
DOMENU

DRAWElox

OF`AW[HAR§

DRAWC I RCLE
DF`AWDOT

ORAOufNI
ELSE
END
EOF
EOLN
ERA§EB0X

10-9
10-10
10-11

4-9
-2

8-4
8-5

10-12
ERA§ECIRCLE 10-14
EfiA§EDOT 10-15
ERA§ELINE 10-16
EXP 5-11
FALSE 5-15
FIELD 9-5
FIX 5-I,
FOP TO [STEP] NEXT 4-5
GET 9-a
GETF I LE. 8-7
60§lJB FiETIJFiN 4-6
GOTl) 4-0
IF THEN [ELSE] 4-9
I NKEY. 7-5
I NPuT 7-6
I NPUT, E)-8
INPUT, a-10
I NSTR 6-4
INT 5-15
INVERTB0X 10-17
INVERTC]RCLE 10-18
INVERTl)CIT Io-19

X

INVERTLINE
I(ILL
LEFT,
|EN
LET
LOC
LOCATE
LOF
LOO

L0010
LSET
HIl),
MKz}., rltl., MK§.
MOD

MOvEcex
NEXT

NOT

0N cOSuB
0N 60T0
OPEN
OR
PI
PPINT
PRINT LIBINO

PBINT,

8-ls' 9-8
S-17
5-'8

9-9
6-8

9-10
2-8

10-21

PR(NT. u§lNC
PUT
RANDOMIZE
READ DATA [RESTORE]
REM

RESTORE
RIGHT,
FiNI)

RO|'ND
R§ET
SEMICOLON
§EN
SIN
SPACE,
SQR
§TACKri§G
STEP
STOP
§TR,
§TRIN6,
TAG
TAN

THEN
T I tlE,
TRl'NC
VAL

WHILE WENZ)

5-23
5-50
6-10
5-Sl

10-22
-3

-15
6-11
6-12
7-20
5-23

4-9
7-21
5-34
6-13
4-14

u

n

rl

ill

ABOUT THIS BOOK

This reference manual introdiices the 6F{iDBASI[proqramming erlvironment.
inc:luding how to enter, run, and edit proqram5. It also Eover5 the Elements
c]f Syntax. Beyorid that. the manual c:las5lf lei and disci(55es eat:h c:cimmand in
6RiDBASIC. Ea[li di5i(cssion includes a brief . e>:ample program. We Invite you
to enter any that interest you and modify them a5 `,`ou wish.

Besides the Table of Contents, this manual inc:ludes an alphabet.ic. Command
Silmmary (+allowing the Table of Contents) and an index.

NOTE: This i5 a referent:e manual, not a tL`torial. If yc}u have never
programmEd in the BASIC lanquaqE, you would do well to fincl a book that
teaches Bf`§I[proqramming and/or take a class in EIASIC.

u

RE

u

rl

iiE

a

Cl+f)PTER I: INTRODu=TI0N

This chapter introduc:e5 6RiDEIA§IC and its programming environment. It also
tt]uches on thE fc]llc]wing subjects:

I How tc) invol:e 6FtiDBA§IC and use its c:cJmmands fc)r writing, running, and
listing programs

• The 6RiDBASIC direc.t mc)dE

• The 6RiDBASIC editc)r and editing screen

I Lines and line nilmbering

Ill+AT IS 6FiiDBA§I[?

6RiDEIASIC meets and e}:ceed5 the requirements of the Americ:an
National Standard for Minimal EIA§I[as de5c:ribed in do[itment ANSI
X3.60-197B. Hc)Never, GRiDEtA§IC i5 much more than a "minimal"
vergion --it is c:ompatible with full-featilred industry Standard
versions of EIA§IC.

lhrvq(ING GRi I)Euslc

You c:an invol:e GRiDE(A§It: iri the Same way that yc]Li Invoke GRID
applic:ations. Far e}{ample, you [oiild select a file of the
apprc)priate I:ind, i.E.. Ela5ic:. 6RiDEIASIC supports twc) mc)des: the

programming or indirec:t mode and the direct moc]E. We will t:reE`t the
prc)gramiTiing mode f ir5t.

Intrc)diicti c)n 1-i

TiE Fiiij6RonlNe I lNDIFtECT) rrol}E

tJncE. you have invc)l{ed GRiDBASIC. the prc}gram editing screen appears.
Figure i.1 below shows the editor Screen ready fc)r input in Its
initiEil form --with no program listing. When yc)u have the program
editor c}n the sc:reen. type yoiir program.

FigurE i-I. The Initial F'rogram Editing Screen

The term I.Editor" refers to that portion of the 8RiDBA§IC software
thrc]ugh whic:h yoi` tyi]e, modify, and list prc}grams. Pregsing RETURN
at the end cif eac'h line generBte5 a new line niimber and a new line.

When you write 5tatement5 with line niimbers, the computer waits fc]r
a CODE-R command before executing the program. We call this the
"indirect mode," bec:ause 5tatement5 don't exec.ute directly when you
complete a ling. They wait in RAM memory, before, during, and after
e}' ecut i c]n .

A8 with c]ther BftiD applic:ations, you pre55 arrow keys to move within
and between fields. Wheriever you exceed the 5creen'5 depth (either
by typing statements c)r by pressing a vertical arrc)w key), the
displayed material "scrolls, " letting yoi` see previously undi5played
materi al ,

After writing or editing a line, be sure to press fiETURN, Dc"nArrow,
c}r Col)E-FiETURN befc}re renumbering the listing or executing it. Any
c]f theEte actior`5 moves your newly written c:ode from the kEyboard
buffer intc) RAM memc]ry. Failure tc] take one of these three actic}n5
can c.aiise the loss of the line in question.

I-= 8Ril)BASIC Fieference Manual

`J

u

)iii

A

iii

Ftuming, Continuing, alid Stopping a Pragrao

NOTE: GRil)BASIC does not asl: you tc] t`,Jpe a RUN. Ll§T, or NEW
command.

Press CODE-Fi to run (a):ecute) the program you..ve typed. Whenever
you riin a program or e}:e[utE a statemerlt, GRiDBASIC di5p]ay5 ttie
program's c}utpiit instead of the current listing. If you have a STOP
statement in your program, you can continue after the STOP line by
pressing Cl]DE-C.

Wllen prc)gram executic)n enc:ounters a STOP or END statement (or when
yc)u press ESC), you see the following message:

Program 5tc)pped at line nnrin

where nnnn is the statement's line ni`mber.

Trie Escape Key

Yell can Stop program E}:ecittion at any point by pressing ESC. Press
E5C once more and yoi`r listing comes bac:k with the field outline
where it was when you i]ressed CODE-R. If a 5ynta>: error stops yciur
program, ESC returns yc}u to your listing.

Erasing Line(5)

You can erase an entire line by plac:ing the ciir5c}r on the line you
want to erase, pre55ing col)E-E, and then conf irming. To erase more
than one line at a time, pre55 the appropriate vertical arrow after
pressing CODE-E. Yc}u Can sele[t a5 many lines for era5i.re a5 yc}u
want before confirming. If you Start at the f irst line, pre56
CODE-E, and follow it with Col)E-SHIFT-DownArrow and CODE-RETURN, you
erase the entire prc)gram.

Other Ccnands

Like GF=iD appliEatic)ns, 6RiDEtASIC also has ceDE-? to SEE and/or
exec:ute available c:ommE`nds (including Renumber), Col)E-a to Cult,
Cot)E-T to Transfer and print files, CODE-U to see meml]ry usage, and
Col)E-Eec to e>:it without 5avirig the current file.

Introduction i-3

TiE DIRECT mDE

The ''direct mode" has no line numbers. When yc}u confirm the line
(Col)E-RETURN), it executes and disappears from the t:omputer'5
memclry. People i ind the clirect mode useful for quic:k Computations
and for debi`gginq small Segments of [ocle. NOTE: All 6Ril)BA§I[
commands, except the looping c:ommands (See Chapter Foiir). work in
the direct mode.

To enter the dire[t mode. press DownArrow from the last statement
f ield in the program. This creates a Statement f ield with no number
field. (Fields are disc:us5ed later in this chapter.) Enter the
material yc}u want to execute. Fc)r eh.ample,

PFilNT 5+3

Press CODE-RETURN, ftETURN, or DownArrow. NOTE: The material you
E.ntered disappears and the answer appears. To continue in direct
mode, |Jress ESC or DownArrt]w. The statement outline reappears. To
return to the indirect mode and generate a ling number, press
RETUFiN. To pc)sitic}n the c:ur5or within the [itrrent listing, press
UpArrow until the c:L`rsor reac:he5 the desired line.

ABniT TiE cRil>BAslc ENvlFtoh.ENT

This Section gives details of the editing Screen and discus5e51ine5
and line nLimbering.

Layout af the GFtiDBA§IC screen

Figure i-2 belc)w 5hc)ws the 6RiDBA§IC editor in the midst c]f marking
on a program. As yoiL can See. the narrc)w column on the left
displays prc)gram line ni`mber5. We call it the "line number field."
The wide cc)lumn to the right displays program statements --the
ac:tiial "te}:t" of the EA§IC program. We refer to it a8 the
"Statement field." You can move within each field, and from one

field to the other. A description of eat:h element in the editor
Screen follows:

Statement Fielcl

Line NLlmt)er Field

I-4 6RiDBA§IC fteferen[e Manual

The f ield c]f the prc]qram editc]r screen where
yc)u enter and edit program statements. The
Statement f ield displays the "text" of yc]ur
BASIC program.

The f ield of the prcigram editc]r 5c:reen where
program line numbers are displayed. 6fiiDBA§IC
generates line numlJer5 automatically. Yc)u

EE

u

EI

rl

rl

n

The Outline

Cursor

Hi qlll i ght i ng

Me59aqe line

f i el d

Cursor

Hi ghl I

Me55ag

also c:an Enter and edit line numbers manually.
See the section below on "Lines and Line
Numbering. "

A rectangular outline Surrounds the current
statement or line number field. When you
first begin editing a program, the outline
surrol.nd5 the statement i iElc], indicating that
you can enter or edit the text that composes
your program.

The blinking triangle within the outline. Its
po9itiori indicates where yoiir next kEy5trc)ke
will appear.

A +c]rm of display that causes te}:t on the
Screen to show as dark-ori-light when the other
text is light-on-dark. (Also called "Inverse
vi deo. ")

The highlighted line displayed at the bt)ttom
of the screen. Your system prints command and
error me5sage5 here.

Line nLimber Statement
f i el dc---

1880 REtl This program rolls a pair of dice

Outl 1 ne \ghtingeline

11©© PRIN1-12cOPRINT1300.I#5Hi',PRINT1400GOTO • INPUT ''How uang throbis"; taunt: f'RINT"DIE,IDIE#2"

•=::ku!:;-#:j r#IR;I,i:oui, L:EXTr`;®w= I

110©
lsee END

ruTT[ill-.._+EL,,-,.T.IH|

Figure i-2. The F'rogram Editc)r Screen

Intrc)ducti on i-5

LINEs Ahu} LINE ^LmaRlrG

Multiple 5tatEmentg and/or physical lines can follc)w any line
number. Only the Size af the Screen limits thE length c]f a line.
When you type a line that e>:ceecls the width of the statement f ield,
the line breal¢5 at the space character nearest to the end of the
field ancl "text wraparDuncl" automatically mc}ve5 the next word c)nto
ttie next line.

Any number from i tc) 64SOOO cc}n5titutes a legal line niimber.
GRiDBA§IC suppc}rts aiitomatic ling numbering, manual line niimbering,
and reniimbering. It also lets you reformat lines for enhanced
readabi i i ty.

AJtcoatic Line Nu.bering

Automatic line numbering begins with line 1000. Each time yc)u press
ftETURN, GR]I)BASIC issues ant)ther line number. If you are not
inserting a line bet.ween two

When you ingert a line, the
by loo. For example, a line
the number 200. Increments
the two [ilrrent line numbers
the two line ni.mber5 is less
inc:rement by 10. The three
(clifferen[e less than 10). 2
(difference of 2 or less).

existing lines, inc:remEntg are by locl.

editor f irst tries to Simply increment
Inserted between locl and 10110 receives

becl]me Smaller a5 the different:e between
Shrinks. When the differenc.e beti~Een
than 100, 6BiDEASIC next tries to

remaining in[rEments are by 5
(difference less than 5). and i

Manual Line Nu.boring

Tc) enter your own line numbers. pc)sition yc)itr EL`rsor on the last
display line of the program or on the last line niimber field. Press
I)ownArrc}w. This caii5e5 a new statment f ield to emerge. Press
LeftArrc)w to create a new line number f ield, then type the desired
line number. Pressing BightArrc]w moves thE cLirsc}r bac}: into the
statement f ield.

Ffroudrering

GRil)BASIC has a command that renumber5 yoiir line numbers so that
they Suit the Current automatic numl]ering fiJrmLtla. To renumber,
press CODE-? and select the Reniimber c)ption. In a mciment, the
command puts all Statements ir`to 6Ril)BA§IC'5 default form --with
1000 a5 the first line niimber and increments c}f 100 between all line
numbers. This command also renumbers in the statement area 5o that
numberg that point to lines (60TO 2710) adjust cc}rrec:tly to the new
line ni`mbers.

1-6 GRiDEASIC Ref erence Manual

u

u

EE

iiil

Zii

Eii

Mul tiple StateJlents

`i'ou can pi`t a5 many 5tatement5 as the 5c.reen pEirmit5 after a }ine

number. Howe`,`er. you mi`5t place a c.olon (:) between each statement
c}n the)ine. For e;:ample. yc]u could put these three 5tatement5

1{)I:1(I FOR X=1 T0 Ei

111.JCI F'RINT X

121:I.:I NEXT X

on I)ne l]ne:

1{:tl.:to FOR X=1 Tt] 5: PRINT X: NEXT X

NOTE: Statements placed after a F`.EM statement (See Chapter 3) do not
e}:ec.|'te,

Ftefar.atting Your Ligting5

You can manually reformat your program listing5 in Such a way a5 to
add to the current number of di5pla\,. lines within a given program
line. Press SHIFT-Fl.ETUFiN at that point in a program line where you
want to begin a new display line.

Ttle ciut.line E>:pancl5 by one display line with the cursor positioned
at the beginning Df that nel~ blank line. The program editor won't
generate a new line niimber. Figure li breaks out the seven
statements in line 13.:10 by inserting SHIFT-RETIJRN5 after each the
each Statement. [omF)are it to Figure 1-2.

Introduc:tion 1-7

leeo REM Thif praorun rc.Ill . p.1r ef dlc.
11B0 P8lNTi INPUT I.tlou n.nu throw."i Counti PftlNT
12®® PBINT "DIE .I DIE. 2"
13ee ' TIl Ill |,aunt,I

Fas x-1 Ta 21
LET ThrowiTRUNC(I 6*RND(I)+I)I
PRINT Throw, .
next X.
PE I NT ,

XT
1®®0 lleo
i5oe END

Figure 1-3. Line 1300 after lnsertinq SHIFT-RETUF!N5

To remove SHIFT-RETURN or other invisible c:haracters, place the
cursor to the right of the c)ffending character and press BAck:§FA[E.

Yc}u terminate mi`lti-line statements jii5t a5 you do single line
statemertt5 --by pre55ing RETUF{N or either vertical arrow key. If
yc)u press RETURN, the statement field oi`tline will move to the lle>:t
line position and will retLirn to its Single line size.

If you c:hoose an arrow key, you will generate a single statement
field (ilnle55 the ne,¥t prDqram line al5c) ocEupie5 multi}ple display
lines). NOTE: If yc}il press DciwnArrow from the last line c)f a
program, you will get a statement field with no line number.

I-8 GFtil)EIASIC F{ef erenc:e Manual

EI

u

u

\

1

iiil

cHAPTEFt 2: GENERfL INFOFunTlen ABtl.T GRiDBAslc

This c:hapter discil5se5 concepts essential tc} programming:

• Synta}: diagrams

• Reserved words

• [onstants, variablEs, and arrays

I E}:pressions ancl oi]erators

• File c:onvention5

I Delimiters

SYNTAX I)IAGF!AM§

This book describes each BF{iDBA§I[and f Ltnction ac:c:ording to the
fol lowing c:onvention5:

• We write BA§It: statments and fun[tions (''reserved words" --See
below) in all iippercase letters. For example. we render the
statement that caiise5 te>{t to appear on the screEn as PRINT.
However. when you enter a statement or functic}n, you c.an type
any c:ombination of upper-and lc]werc:age. All the fo}lc)wing
iteration5 constitute legal forms of the PF{INT Statement:

PRINT print Prlnt PRINT

General Information 2-1

• Variable names begin with a capital letter. For e}:ample:

LET AS=NameS

• You must sLipply any item 5hc)wn in lc)werc:age characters. For
e}:ample, the GOT0 c:ommancl synta;.(

GOT011ne#

means you must si`pply a line niimbEr. Failure to prc]vide a
reciuired parameter resiilts in a synta}(error or iine>:pe[ted
program output. For example, B0T015Ct, the legal form, tells the
program to ji`mp e}:ecutic]n to line LEO.

The follc]wing L`sage5 are illegal:

B0T0
B0T0 bed

The first fails to supply a line niimber: the 5ec:and 5llF)plies a
charac.ter String.

• Items enclosed in sciuE\re bra[l:et5 ([]) are optional. The LET
command synta}: loot¢5 like this:

[LETJ vE`ri E`bl eName=e;.:pres5i c}n

This means that in as5iqrting a [onstant tci a variable, you may
drc)p the ''LET." Thiis both

LET A=5
and
A=5

are c:orrect and accomplish the same piirpo5e within E\ program:
they store the c:c)nstant 5 in variable f).

I If you have a choice bEtween twc] items. the choices are separated
by a vErtic:al slasti (I) and sLlrrounded by c`i`rly brackets ({}.).
For example, the Syntax diagram

PRINT [expre5sic)n][{, :;}]

means that yoi` have the optic]n I:note sqiiare brackets) of piitting
eit.her a c:omma or semi-colon after an e}{pression. Note that.
thoiigh `/ou have a choic:e between the Items in the c.Lirly brac:ket5,
you mi`st supply one of them.

2-2 6RiDBASIC Reference ManLial

LEI

u

ill

il

lil

n

I A trailing EllipE;i5 (three dots --...) indic:ate5 I:c)ntinuation.
Far example, in the DIM syntax Statement,

DIM variableName(subscripts)I, variableName(5ub5[ript5)I...

the ellip5i5 at the end indicates that you can [ontinue the
variableName(5i`bscript) pattern as many times as you want.

I A vertical ellip5)s indicates that other 5tatenents may come
between the f ir5t and last items. Far e>:ample, you may place
exe[utable statements between FOP and NEXT.

• When programming, you mii5t include all punctuation --commas.
parentheses, semicc}lcins, colons, or equal signs, as shown (except
the syntax piinctuation --square brackets, curly brackets, ancl
the vertical 5la5h).

FtE- NtNap§
6RiDBA§IC reserves the words that represent its statenent5.
functions, operators, and con5tant5 for their individual tasks.
Because they are reserved, yoil cannot iise them a5 variable5.
However, yc}u can place them within variable5. The f irst twcl
following e!{amples are valid; the 5ec:and two aren't.

INF'UT "Type each e>:tra item.', REMainderS
LETter=ASC (NameS)

INPUT ''Cost of unit"; VAL
LET Tc!tal=Data+(.()65*Data)

In the f irst instance, the reserved word AND is hidden within the
variable "I(and5." In the seccind, a reserved word, DATA, is used as
a variable.

This list al5c] Serves as a quick index tc} 6Ril)EAslt:'s statemerlt6,
commands. operators, and i i`nc:tions. NOTE: The reserved words ON,
and USING are not whole commands, but witli other words make up such
commands. ThE»se words are:

General lnf ormation 2-5

ENI)

EOF
EOLN
ERA§EB0X
ER.ASECIRCLE
ERA§EI)OT

ATN EftA§EL I NE
CI)BL EXP

CHRS FALSE
CINT FIELD
CLOSE FOR
CLRMSG GET
COS 6ETF I LEO
C§NG GOSUB
CVI) 60T0
CVI IF
CVS I NKEYS
DATA I NPUT

DATES I NF'UT#
PIN INPUTS
DOMENIJ IN§TR
DRAWB0X I NT

I)RAWCHAR§ I NVERTB0X

DRAWC I RCLE INVERTC I RCLE
DRAWDOT I NVERTI}OT

DRAWL I NE I NVERTL I NE

ELSE KILL

LEFTS PUT
LEN RANDOMI ZE
LET F{EAD

LDC REM

LOCATE ftE§TORE
LOF RET LJRN

LOG R16HTS
L0B10 FiND
LSE T ftouNI)
M IDS RSET
MK DS SGN

MKIS SIN
MK§ S §PACES
MOD SCR

MOVEB0 X STACK M§O

NEXT STEP
NOT STOP
t]N STR$
ON 60T0 STRING$
ON GO§UB TAB
OPEN TAN
0f? TH EN
PI TIMES
PPINT T0
PRINT IJ§lNB TRUE
PRI NT# TRUN[
F.ft[NT# lJ§ING USING

Tdble 2-1. 6R.iDBA§IC f}e5erved Words

cesTAV§

Program execution operates on values that we call "constant5. "
6RiDBA§IC re[ognize5 two kinds of constants: string con5tants ancl
numeric c:onstants.

String Cen5tant5

A string c:on5tant i5 a 5eqiience of characters (ranging in length
from 0 to 65,535). NOTE: You can only enter one screenful of
[haracter5 at a time. A String constant can inc:lude any valid
character. You must plac:e double quotEition marks before any string
lf the String does not eiid the program line, `/'ou must also close it
with double qilDtation marks. You Can treat a number like a
charac:ter string by plating it within quDtation marks. see the
examples of String c:onstant5 (5iirrounded by their quotation marks)
below:

2-4 BRil)BASIC i.ef E.rence Manual

u

EI

iiE

rl

n

"A"

" $ 1 C,0 . ,JO(, . ,)(,a . {,C, „
"Qiiarterly Prof it Statement"
„%@*8,?„

'675„

t\Li.eric Constants

Ni`meric constant5 are pc]sitive or negative numbers. 6RiDBASIC
operates on two different types of numeric c:c)nstants: real numbers
(also known as dec.imal or f]oatinq point numbers) and integers.

GRiDBA§]C performs all numeric operatic)ns in cloiible pre[i5ion. This
allows for 15 signific.ant digits. 8RiDBASIC hanclles numbers as
small as 4.19E-507 and a51arge as l.67E308.

Real numbers are pc}sitive or negative niimbers that can include
decimal points. 6RiDBA§IC works on doiiblE preci5ion, real numbers
anc] provideg 15 diqits of precision. Three examples of real number
constants are:

a.12345678901234
987654321. C198765
-i.I

NOTE: GRiDBASIC does not return niimber5 in scientif ic: nc)tation (alsc]
kriown a5 "E notation"). You can enter numbers with the c:arat r.) to
indicate pciwer (10``3 i5 the same ail() c:ubed). bi`t the 6Ril)EIASIC
will never print 10E5.

Integers are whole numbers between -52768 and +52767, inc:1usive.
Integer c:c)nstant5 do not have deEimal points. 6RiDBA§IC 5tore5 all
integer values in 15-digit format and c:onverts them to real ni`mbers
before operating on them. No cost in speed rE5ult5: Operations on
real numbers are as fast as integer operatic)n5, because of special
arithmetic hardware.

Here are e>:amples of integer c:cJnstant5:

- 1 C) 1 C) I

0
2C'01

64

6enera] Irifc)rmEition £-5

VAFtlAELE§

A variable i5 a symbol. It stands far the memciry addregg where the 1/
computer storeg thE exprBsgion you assign to the variable. Thiis
"A=15" tells the [ompl`ter to 5tc}re the value 15 at a position in

memory that yc}u have assigned the addre55 ''A." When BASIC executes
the program it gubstitiite5 the constant found at the addre9g for the
var i ab I e .

Thus when the computer exec.iite5 the c.ommand

PRINT A

it goes to the address labeled A, and prints the constant it finds
there. If wE use the c:onstant assigned above, the number 15 woi`ld
appear on the 5c:reen.

Variable names must begin with a letter, but the rest Df the
Characters in the name t:an be any number, letter, or the decimal
pc)int. The lertgth of a variable can range from one c:haracter tc} one
full 5c:reen.

Variable5, like constants, can be One of two types: string or
numeric. The last character in a variable name identifies the
variable's type.

String variables must end with dc)llar Sign (S). Fc}r Example:

NamES
DayofweekS

Integer variable5 must end with the perc:ent sign (./.). For example:

Age./.
Answer./.(2,3)

Real variable5 Can End with any c:harac:ter except a dollar Sign (S)
or pE.rcent sign (./.). BRiDBA§IC assi`meE all variable5 are real
variable5, unless told otherwise. Thus the fallc}wing are real
variableg:

Re5ult5
Forecast 1983
al23.O
Rad i ans* 1. 8

2-6 6F3iDBA§IC Refererice Manual

u

u

lil

lil

iii

AFtRAY VAFtlABLES

An array is a qroiip of vali`es referertced by a single `/ariable name.
Individual values ln the array are called "elements." Eec:au5e each
elenent i5 itself a variable. you c:an plac:e an element in an
e}:pre5sic]n. You can al5c] operate on it with ariy func:tion or
statement that takes variables a5 argiiments.

Elements within an array are named with the array name Eombined with
a niimber(s) enclosed in parentheses. For example, if an array name
is Months and Eonsist5 of String variables that are the names of
months, you might ref er to December (an element c)f the array) a5
HonthS(12) and January wc}uld be MonthS(i).

]n the example above, the array riamed Months i5 a c)ne-dimensional
array with 12 elements. An array c:an have up to 2i5 dimensions and
a Single dimensic)n can have up to 65,555 elements. The ma>:imum
total number of elEment5 yc}u can place in an array is 65,5:`5.

Thus you Could have an array with 1 c]imension and 65,555 elements
and yoit could have an array of 255 dimen5ion5, each dimension having
257 elements. When you ac:ces5 an element in a multi-dimensional
array, you must Specify the element.`s pc)sition within each dimension
c)f the array.

The I)IM Statement Specifies the number of dimE]nsiDn5 that an array
c:an have and the number of elemE>nts within each dimension. You do
not have to dimensicin (DIM) variables, iinle5s they have mc)re than
one dimension c)r more than ten elements. 6RiDBA§IC automatically
e>:pand5 the stc}rage Space required fc}r String variables. All arrays
start at 1 (one). nc)t zero. Chapter Three describes the I)"
statement in detail.

ExpFtEssloNs Ai`II) OpEFtATas

ln)ts Simplest form, an expre5sic)n cc}nsist5 of a constant or a
variable. You can also connect con5tant5, variable5, and functioii5
with operators. GRil)BASIC has three types c}f operatc)r5: ni`meric:,
String, and logical.

trder of Precedence arid NhI.eric aperator5

6Ril)BASIC siippt]rts the numeric operators listed below. We have
li5tecl them by their order of precedence, that is, by the order in
which GRiDBA§IC evaliiates them when they appear in an e>:pres5ion.

General lnformatic]n 2-7

() F'arenthese5

Functions (SIN, LOG, etc. --see Chapter Six)

Unary minus (the negative Sign)

Ex ponen t i at i on

I / \ MOD Multiplic:atic}n, i loating point divisic}n, integer
di vi si on

Addition, Subtractic]n

Relational Operatc)rs (See below)

Logical operators (See belc)w)

Fielatiofial Operators

The relational operators are a Spec:ial Sub-c:ategc)ry of numeric
operators and have the lowest precedence c)f all tlie numeric
c]perators. These are the relatic}na] operators. NOTES All of thesE
operators have equal precedenc.e.

< Less Than

i Greater Than

<= Le55 Than or Eqi`al To

}.= Breater Than or Equal To

= EqL,al TO

<} Not Equal To

Logical Operators

The logic:al c}peratc}r5, listed in order of precedence, are:

NOT

ANI)

OR

XOR

2-8 6RiDBA§IC Reference Manual

u

u

I-.

In GRiDBA§IC, logical c)perators perform logical (Boolean) c)peratic)n5
t}y acting on every bit in the 16-bit integer value presented to it.
Tc} do this, 6RiDBA§IC follc"5 three 5tep5:

Cc)nvert valile to an integer

Perfc)rm a bit-wise logical operation

Convert the integer back to a real number.

With the exc:Option of NOT, a logic:al operator connects two or more
operands and returns a true or false value. NOT i5 a unary I)perator
(like the Signs plus and minus) and simply cliange5 the truth value
of its operand. The re5iilts, ''true" (not zEra) or "false" (zero)
value, form the basis for the Computer tc) make a deEi5ion,

For example, in an IF statement, the computer takes one course of
action when it i ind5 a zero and another coLlr5e ir` the case of a
nan-zero value. Yol(must be carefiil in stating your lc)gic. A5 an
example, here are four programs, all of which try to trap any
unwanted user res|]onse5. Their commor` theme is to act as an input
filter. The prc}grafll only accepts a re5pon5e cif "Y" or ''N." If the
user types any other character(5), the filter says "Sorry" and loops
back to the INPUT statement.

Look at the first program in Figure 2-1.

1000 RErl Logic I - Typ. .icoatch
1100 INPUT nY or N"; An.I.er.
12oo IF Ansrer. <> .V. en -N" TREN COTO lapo
1300 PRINT -Thank."
i4OO Ere
1500 PRINT -Sorry, "i: GOT0 llco

Figure I-1. Example of a Type Mismatch Failure

It fails at line 1200 and i5sues a "Type mismatc:h" error me55age.
Why? Elecau5e the program i irst evaluates the statement

Answers <::.~ "Y"

I)epending on the re5pon5e, it returns either a Boolean a or 1. The
OF{ than compares the Boolean to N, a string. And that c:reate5 a
type mi5match, because 6F{iDBA§IC won`t compare data cif differinq
typE>s (in thi5 case. EIoc)leans and 5tring5).

Beneral Imf ormation 2-9

\1

Eii

The prc}gram in Figure 2-2 won't f ind anything true. Nc) matter what
yc]u type, it Says "§c)rrv." Loot< closely at line 1200.

1000 REM Logic 2 -- ev.luate. nothing a. true
1100 INpllT "Y or N"i Answer.
1200 IF An.wer. <> "Y" OR Answer. <> ''N" THEN 60T0 1500
1500 PRINT "Thlnk."
1400 END
1500 PRINT "Sorry, "il cOT01100

Figure 2-2. Example c]f Faulty Logic:

In this case the logic Says, if the input is either riot Y ar ncit N
then Say "Sorry." But Y is not N and vic:e versa. Ttierefore. the
logic fails Y and N, a5 well a5 Everything else!

Now tor a working e!:ample.

1000 f`EH Logic 3 -- .v.luat.. correctly
1100 INPUT "Y or N"i Anewer.
1200 IF NOT (An.Her.-"Y" OR Anlwer.I"N") THEN GOT01500
1300 PRINT .Th.nk."
1400 END
1500 PRINT -Sorry, .i! GOTO 1100

Figure 2-3. A Working Logic

ln Figure 2-3, the logic 5ay5 if the response is neither "Y" or "N,"
thEtn say, "Sorry." That..s what we want, because if the re5pon5e is
one of thc)se, we have an appropriate input.

Thig i5 not to say that line 1200 in Figure 2-3 is the only way a+
presenting this logic. Line 1200 in Figure 2-4 also wc)rks.

2-10 GRiDBA§IC Reference Manual

u

u

EI

Zii!

iii

Zii

1000 F`EM Logic 4 --AND .I.a Nark.
1100 INPUT ''Y or N"i Answer.
1200 lF Answ.r. <> I.Y" AND Answer. <> `.N" THEN 60T01500
1500 PfuNT ''Thanl<."
1400 END
1500 PRINT "Sorry, "!! 60T01100

Figi`re 2-4. Another Working Logic

lt says if the input is not "Y" AND nc)t "N" gay ''§orry." That'5
what we want. because that'5 what wE See as an invalid re5pc]n5e.

Chapter Five disc:iis5es eat:h of the logic:al c)perator5 in details. It
also covers the two ElcJolean constants, TRUE and FALSE.

String Operators

String operators perfc}rm relatic)nE`l cc}mparison5 and c.ancatenation on
string expre55ion5.

The relational operators for 5trinq expressions are the Same as
those described for nL`meric: operators, becaiise you are actually
performing niimeri[operations. For E>:ample, if you use the Le55
Than (f``) operator to compare two 5trings. the A5CII values for each
[hara[ter in the twc) 5tring5 are compared to See chic:h has the
smaller numeriE value. The result of the operation is thii5 a
numeric result.

NOTE: 6RiDBASIC makes Eompari5on5 of alphal]etic charaEter5 without
regard tc) capitalization. Thus the characters "A" and "a" are
regarded a5 equal even though they have different ASCII values.)
For a list of the relational c}peratc)rs, see the disc.us5ion in the
preceding paragraphs.

The plLi5 Symbol (+) ''concatenatE5" or joins Strings together. The
e>:ample below illu5trate5 thi5.

AS="This i5 a "
EIS="c:c}nc.atenated 5tri ng"

Therefore. AS + BS bec:ome5

''Thi5 i5 a t:c)nEatenated string"

6enEral lnformatic]n 2-11

FILE NAMING CONVENTIONS

When your programs use the OPEN or k-ILL 5tatement= (disc:u55ed in
Chapter Eiqht), they milst Specify the name c)f the file to be opened
IJr deleted. Yoi` cannot perfc)rm these c)perat}ons with ttiE] Transfer
command (CODE-T). However, you c:an incorporate the file fc)rm used
by the Transfer tc) get the i ile name information yc}i` rieed. Tc) clo
this, use the 6ETFILES command (See [hapter E]ght). If yc}u chc}05e
6ETFILES, you c:an ignore the detail5 of the Compass Computer
ciperat:ing sy5tem's file naming conventions given below.

You identify a file by Specifying Its "pathname". A pathname
clefineg the rc)ute the computer ta}``es to a file. A complete pcithname
includes the device and 5itbject where the file 15 located plus its
title. and kind. The complete pathname schema is a5 follc)w5:

tdevi ce tsubject .ti t I e~k i nd

Thus to 5pe[ify a GRiDWFtlTE i ile with the title Fore[a5t, when it
resides i(rlder the 5i`bjec:t E`L`siness on the bubble, yoL. would enter,

' b ` Elii5 i n e55 ' For ec a5t ~TEx t

The system defaiilt5 to the cilrrent device, subjec:t. and kind. As a
re5lilt, you don.`t have to respe[ify them. If you were 5tayinq
within current defaults, you could open the e>:ample file by typing

1000 OPEN "I",2, " 'Forec:ast"

where 10()0 i5 the line number, Ill" indic:ate5 5equEintial inpiit. and 2
is the file tag number (See the OPEN Statement in Chapter Eight for
syntactic:al details.)

Note the ti.Io pathname delimiter Eharacter5: the left single qiiote
(') or "tick" and the tilde (fy). The tic:k mList precede devic:e.
subject, ancl title names. Press Col)E-' to print a tick. The tilde
(~) must precede the kind. Generate ttii5 c:haracter by pres5inq the
Col)E-: combinatior`.

If yc)u specify a pathname that dc]es not begin with the tick, the
5y5tem assL`mes that the first name it encoi`nters i5 the title and
that you have left off the clevice and sub`iect names. Thi5 limit5
the 5earc:h for the title to the ciirrent directory, that is. tc} the
current de`/1ce and Subject and makes file accE.ss quic:ker.

If yc)u pro`fide the c:c)mpletE pathnamE incli`ding devi[e, si(b.jet:t, and
title, the c:omputer f irst seE`rches all ac:tive devicE5 for the
subjec:t. From the 5iib.Tect it then searches for the title. If the
title is c}n-line, this proc:e551ocates it.

ThE ma}:imi`m lenqth of subject and title names is all charactErs eec.h.

2--1= 6F{iDEIAS]C Ref erence Mariual

EI

EE

EI

lil

iii

1

Subject and title names can c.on5i5t of any printing [harac:ters
(including spaces) except the following:

t left Single quc)tation mark ("tick")

~ tilde

- hyphen

: colon

File Kinds

Plac:inq the file kind (5ometime5 referred to a5 the file "type")
after a title 15 optional. It.:ind5 let you c.la55ify 5Everal related
f iles under the Same title while as5igning them different "}`.ind"
c:haracteri5tic:5. Interpretation of the kind i5 left up to the
applic:ation. For a thorough di5Eu55ion c)i file kinds refer tc] the
"CompE`ss [anputer Operating System ReferE.nee Mani`al. "

Dell,iter5

I)Elimiters are characters that set c)ff t:ertain programmirig elements
from others, so that the language's "interprE.tE>r" can separate
`/ariablE5 from operators from con5tant5 frc)in reserved words.
6FtiDBASIC has Only c)ne delimlter, the 5pac:E c:hdrac:tar.

Though vc)u needn't plac:e 5pac:e5 aroiind operators (with the exEeption
of MOD), you should place them arc)und variables and reserved worcls.
Imprc}per delimiting results in an "Improper 5vnta^`" message.

GenerE`l Information 2-13

u

-.I

EI

\1

n

lil

cHAp"R 3: AsslehrEhrT AhD oEFINITlou sTATErprs

The 5tatenent5 in this chapter a55ign values to variable5 and clEf ine the size
c}f arrays.

6RiDEIA§IC F{eference Manual 3-i

1} I Iq

F0funT

NOTES

This statement establi5he5 the dimensions c)f an array and allocates
Storage spacEi for thE 5pecified number of elements.

D" var i abl eName (si`bscri iJts) I , `/ar i abl eNamE. (5ub5cri pta) J . . .

You must dimen5ic)n (DIM) any array that cc}n5ist5 cif more than ten
elements or more than one dimension. If an array variablE name is
used withoilt the D" statement, the maximum valiie of its subscript
is 10.

A 9ub5cript i5 an expression that clef ines the maximum number of
elements in an array. It fc]llows the array variable name and i5
enclc)5ed in parentheses. Thli5,

Year (12, 31)

is a two-dimen5ic}nal array. The i irst Subscript can contain a5 many
a512 elements, the sec:and 31. The minimilm value of a subscript ig
one, not zero.

The maximl`m number of dimen5ic}n5 that an array can have is 255..
Dimensions can hold any number of elements a5 lc}ng a5 the tc)tal
number c)f elements for the entire array dc}es not exceed 65,5:`5.
Thus if yc}u dimen5ioned an array to liave one dimension Eontaining
65,534 elements, you would have limited yc)ilr program to having just
one other dimension, and a dimension pos5Es5inq only one Element, at
that I

If a program tries to reference more elenents than the 5ubsEript
allows, you will See the error message:

Array reference i5 c)ut of range

You Can e5tabli5h tlie dimen5ic}n5 of more than one vELriable array at
a time with a 5ingle D" Statement. Just separate the speEif ication
for each variable array with a c:omma. For example, the Statement

1{100 D" AN§WEF`.S (2,14,1(to) ,NAMES (20)

defines a numeri[variable array with the name ANSWERS having three
dimensions and 2800 elements (2 x 14 >: 10(1). The Same DIM Statement
defines a String variable array called NAMES with one dimension that
can ha`7e 20 elements.

3-2 Assignment and Definition

u

n

iiE

ZiE

ExflRE

A note on string arrays: With GRiDBASIC, you don't have to dimension
the actL`al strings, Just the number of elements.

Subs[ripts c:an be ni`meric `/ariable5. instead c)f c:cin5tants. Ee si(re
that yoit have previc)ugly dec:lared any such variable; otherwise. yoi`r
siibscript will amount tc) Zero. Fc)r example.

1llc)0 DIM 60NZO(25. A, a)

dimensions a numeric array. The i ir5t dimension has an absolilte
mat:imum number of elements. 25. The second two depend on what value
you (or the program) ha`.JE prEvic}uEly assigned the nL`meric variables
A and a. NOTE= If a variable should char`ge its valiie later, the
array will remain unaffec.ted. It holds the c)riginal `/Blue until you
redimen5ion it.

Tc) redimen5ion an array, just restate its DIM Statement with the
desired valiie5. Redimensioning autDmati[ally c:lEar5 the old array.

11-)00 DIM Array(4)
1100 FOR X=l TO 4

1200 Array (X)=X
1300 NEXT X
140CI FOR X=l to 5
15llc) F'RINT Array(X)
160CI NEXT X

20011 END

In this e}:ample, line 1200 assigns values frtJm the loop (the valiie
of X) tc) each element in the array. We assign fc)ur values to fc}ur
elements, 5o everything i5 f ine.

However, line 14(10 e}:ceed5 clur dimension by one, 5o the prDqram
halts when it tries to handle this larger number, leaving the error
mEssaqe:

Array reference i5 out of range
Program Stopped at line 1500

We can fix this protJlem by changing the 5 to a 4 in line 1400.

GRiDEIA§IC Reference rlanual 3-3

LET

FOFunT

veTES

EXAmLE

The LET Statement assign5 the value of an e}!pre551on to a Variable. (u

[LET] variableName=e}!pres5ion

LET is optional. You can write the variable fc)llowed by the eciual
Sign and then the expre5sic}n with the value to be a55igned without
the word LET.
The two following 5tatement5 perform exactly the Same; they both
Store the value 2 at the variable LoopCc)unter.

1rjo(I LET Loopcoi`nter=2
10011 Loopcoi`nter=2

If yoll assign a numeric: value to a String variable cir a String value
to a ni.merit value a Type Mismatch error oc:curs.

1000 LET X=2(I
lil-)(I Y=X*3
12110 PRINT X

15Cl(l PRINT Y

140(I END

The a,`:ample a55igns values to variable5 with and without the LET
statement. Lines 1200 and 1300 print each value, 5howinq that both
ways wc)rk.

3-4 Assignment and I)efinition

u

u

n

rl

Ziii

FtEf}D I}f}Tf} [F{E=TOF=E]

READ, DATA, and RESTORE [on5titute a trio cif statements that, a5 a
team, assign values to variables. NOTE: RESTORE i5 optional.

FOFVAT

FiEAI) variablE[,variableJ[.... J

[RESTORE [line#J]

I)ATA constant[.t:cinstant][,...]

NOTES

THE READ STATEMENT

The REAI) statemEnt I]egin5 with the word "FIEAD" and follows tl`at with
at least one variable. The following are legal READ statementg:

1000 READ NewNumber

1200 READ La5tNameS, Counter

1300 READ A, 8, C, D

The READ Statement assigns its variable(s) the value(5) it finds in
the program's I)A" statement(a).

FtEAI) cannot c}perate alone; its F)rogram must c:ontain at least one
I)ATA statement. Each time the program e):e[ute5 a FtEAD. it movE.a a
pciinter to the next item in the DATA statement list. When program
execution begins, REAI} has its i]ointer Set to the f irst item in the
f ir5t DATA statement. When no more I)ATA items exist, a

f3an Out of data

error oc:c:urg. You can reset this pointer with the RESTOE.E Statement
(see below).

When a program has more than or`e DATA statement, FIEAI) proc:eeds by
line number, reading all the data in each program line before
Continuing to the next line. Within each line, it reads eat:h item
of data in order.

A READ Statement tan have both numeric and String variable5. The
values read from the DATA 5tatemerit are assigned on a one-by-one
ba5i5 to the variable5. These values, hc)wever, must agree with the

BRiDBA5IC Reference Mani`al 3-5

variable types Spec:if led in the READ statement or a Type Mi5matc:h
errc}r OCC:Lir5.

One READ Statement c-an take constant5 from one c)r more DATA
5tatement5, becai`se BRiDBA§IC strinq5 the items in multiple DA"
statements togEther in one long list. §imilarl`/, more than one READ
statement [an Operate on a Single DATA statement. Each REAI)
statement takes the ne>(t item in the DATA statEment(5) list of
items,

u

THE DATA STATEMENT

A I)ATA Statement begins with the word "DATA" and follc]w5 it with a
list of nllmeric and/t]r string cc}n5tant.5. (A list can be a5 short a5
c)ne item.) A c:c)mma mli5t separate individual [on5tants, but should
not appear after the last item. For example,

290CI DATA 1492, "Nine, Pinta, §anta Maria". Columbus, 3.14

Ni`meric c:onstants c:ar. be integer, real. or short real nllmber5.
String cc}nstant5 can have up to 65,555 c.harac:ter5, the maximum
length for any DATA Statement. These strings reqi`ire no qi`otation
marks unle55 they c:ontain cc]mmag. colons, or signif i[ant leading or
trailing 5pac:es. NOTES Expressions are not permitted in DATA
5tatemEnt§.

A program can inEIL`de as many DATA 5tatemEnt5 E`s memc)ry permits.

:::yc::ep::::}::::`:a:::There wlthln a program (even after an END): u

THE RESTORE STATEMENT

RESTORE resets the REAI) statEment's pointer tc) thE beginning of the
spec:ified line. If you don't specify a line, the pointer returr`5 to
the f irst DATA Statement in the program and its f ir5t item.

EXArRE

ll-)OC) DATA agate, 365. boy, Cow. 3.14. dog, elbow, foot, girl,i()a
110Ct ftEAD AS

120(, PRINT AS.
13{10 60T0 10Clll
14(:)!:' ENI)

This example mixes both string and niimeric con5tants in its DATA
statements. When line 11C]t) reads line lot)0, it turns the numeric:
cc)ristants into 5tring5. The e}{Bmple immediatley below is exactly
the same program, but with its DATA Statement in a different
p05i t i C,n I

3-6 A55iqnment and Definition

EE

RIB

A

1

lc}CIO READ AS

1100 PRINT AS,
12CtcI B0T0 1Cloo

13Cto ENI)

14Clo I)ATA agate, =`65, bc]y, t:ow. 5.14, dog, elbc]w, foc)t, girl,10{1

The rE>sults are e>:actly the same. See Figure 3-I

Figure 3-i. Re5ult5 a+ a Simple READ I)ATA Program

ln the ne}:t example, the READ statement Contains both a String and a
numeric variable (see Figure 3-2). A5 the result of this program
show, the two variable5 take turns draw)ng from the DATA statements.

lot)0 DATA agate, 565, ball.125. cake, 3.14, clc}]l,1{)a
1100 READ NounS, Number
1211() PRINT NounS;" i5 a nc}un"
1300 F'FtlNT Number;" i5 a nilmber"
14(:10 GOT0 100Cl

150Ct END

agate is a nouri
365 is a number
ball is a noun
123 is a number

e ls a noun
4 is a niunber

is a noun
is a number

Figure 3-2. Results of a REAI} with Two Variables

The e>:ample below contaiils three READ statements. In each case, a
loop controls the number c)f times the READ Statement aEt5.]n this
way, none of the 5tatement5 runs out of data.

GRiDEIASIC RefErence Manual =`-7

1000 FOR [ounter=l TO 3
1100 fiEAI) X
1200 PRINT ''X = ";X,
13C)0 NEXT Counter
1400 PF;.INT: PBINT: RESTORE 2600: PRINT "A RESTORE 5tatenent
here " : PR I NT
1600 LET Loopcoiint=O
1700 WHILE LoopCount {:i 9
1800 LET LoopCount=Lc}opCount+i
1900 F{EAD Y

2000 PRINT "Y = ":Y.
2100 WEND
2200 PRINT: PRINT: RESTORE 2600: PRINT ''A RE§T0BE statement here":
PRINT
2300 FiEAD Z
24()0 IF Z.{} 11 THEN PRINT `'Z EI "iz, ELSE END
25()0 80TO 2300
2600 DATA
2700 DATA

3-a Assignment and I)efinition

RE

EE

u

F=E11

FORmT

veTES

EXAHPL£

n

Ziil

This Statement lets you insert e}:planatc]ry remarks intc) a program.

{REM remarks i 'rEmar}{s}

GRiDBASIC does not Execute REM statements. They c)nly appear when
you display or print the program listing.

6RiDBASI[also recognizes a 5inqlE quotatic)n mark or apostrophe (')
a5 a REM statement. If you branch into a REM Statement (frc)in a
€OSUB or GOTO Statement) , e}{ec:i`tion continues with the first
executable statement af ter the REH statement.

You can pi`t a REM statement on a multiple statement line lJy
Separating it from preceding 5tatement5 in the normal way. with a
colon. NOTE: Program execiition ignores any 5tatement5 that follow a
REM Statement within the same prt]gram line. Note further that REM'5
take up memory 5pa[e and Slow prc)gram exeEutic)n.

loot) REM This text is a remark.
1100 'This text is a remark.
1200 REll The next statement won't print: PRINT "You're Right!"
1300 END

The f irst two statements are Eciuivalent. The f inal statement
demon5trate5 what happens to commands placed after a REM. Nothing!
If `/ou riin this program, all you will get i5 a blank screen.

GRiDBASIC fteference rlanual 5-9

u

EE

EEE

iiE

1

ZiiE

ciiAPTER 4= sTATEHEi`iT§ TiiAT cowTm FiiD6iiAii FLiN

This Chapter de5Eribes Statements that alter or halt normal
Statement-by-Statement execution and allow loopg and corlditional exec:iition of
Statements.

Program Flow Contrc)I 4-1

E= IV I)

F-T

NOTES

EXArRE

This statement terminates program executit]n and closes all files
that were opened. .

END

Yc]u can terminate program execution with either the END statement or
the STOP Statement (degcribed later in this [hapter). END differs
from STOP in that ENI) c:loses all files. Therefore. you cannot
resume program execution with the Continue command (CODE-C). When
an END is enceilnterEd, the following message is displayed:

Program Stopped at line nnnn

where nnnn i5 the line number where the ENI) wag encountered. You
can return tc} the program editor by pressing any key. You can begin
program Execution again by pressing CODE-R (the Run Command).

An END Statement at the end of a program i5 optional. If there i5 no
ENI} 9tBtement at the end of the program, files renain open until you
exit the program with the 8uit command (CODE-8).

Regardlega of when the END Statement i5 er`[auntered and executed, it
always [au5eg termination of program exeEutic)n.

1000 LET AE5
1100 INPUT "A equals 5. How much 9hauld a equal ":a
1200 IF A<>B THEN ENI)
1300 PRINT "Bc}od-bye for now...
1400 ENI)

The END statement tan live within a program a5 easily as it does at
the end. This example ct]ntains two END 5tatementg -- one at the end
and the other within another statement (line 1200), The logic sayg
to end if the variables A and a are iinequal. If they botli eqiial 5,
print a "good-bye" message bet cire ending.

4-2 0Ril}BA§Ic fteference Manual

RE

u

n

lil

1

FOF= TC] [§TEF1] IUE=XT

The FOR ,TO, and NEXT tric} c)f stEitEments c:reate a program lc}op.
In5tri`ctic)ns withln this loop repeat each time the loop e,`:ecutes.
These 5tatement5 help clef ine the rarlge, Increments. and niimber of
lc)ops. Programmers often refer to these as "For Ne>{t loops."

F0fVAT

NOTES

FOR variablel=expre55ionl T0 e:.(pre5sion2 [STEP exprE5sic)n3]

NEXT variablEl

The fc)llouiinq li5t describes the foLir parameters taken by FOR NEXT.

variablel: A variable that acts as a c:ountEir.

e>:pressic)nl: The Initial value c)r settirig for the cour`ter.

expres5ion2: The final or limit \Jalue of the countEr.

expression3: Trie increment value added to or 5iibtracted from the
c`ounter after each pass through the loop. This
expres5ion is optional. If you clon't 5pecify a vali`e,
GRiDEA§IC assigns a value of 1 (one).

When program e>:ecution encourtters the FOF{ Statement, it checks ta
determine if the Initial value (e}:pressionl) of the counter
(variablel) is greater than the final value (e,\:pre55ion 2). If it
is already qreE`ter, the bc}dy of the loop 15 skipped and the
statement follciwinq the NEXT statement is E;.:ec:uted.

If it is not greater. the prc)gram line5 following the F0ft statEment
are execitted iintil the NEXT statement is encc)unterecl. At that
pc)int, the counter (`,.`ariablel) i5 in[remented (or in the case of a
negative STEP. decremented) b\,J the amc)unt Specified in e}:pre55ic}n3.
Program E}:ec:ut.ion then branches-bac:k tc} the FOR statement and the
process 15 repeated.

If the STEP `,'ali`e (e>:pression3) is a neqative, the logic: just
described is reversed. The loc)p)a 5L:ipped when the c:oiinter
(e}:pres5ic)n2) is less thE`n the f inal vali`e and the coi`nter 15
decremented af ter each F)ass throitgh the loc]p.

If expre55ic]n3 (the STEF' Increment,';dec:rement) evali`E`te5 to zErc]] an
endless lc]op occurs. Linles5 you provide some method c)f 5etting the

F.rc)gram Flow Control 4-5

c:ounter greater than the f inal value.

You can "nest" FOR NEXT loops (place or`e FOR NEXT loop inside
another) to whatever depth \/c}u want; you are limited only by the
amount of available memory. When you nest loops. you mi\st Provicle a
i`nique variable name for each loop counter.

Mal'e Sure that that the NEXT Statement for an inside loop appears
before that of an outside loop. A loop like

1000
1 i a 11

12C'C)

131111

140(I

[au5es an

EXArfur

FOFi X=l TO 5

FOR Y=l T0 10
PRINT X' Y

NEXT X

NEXT Y

"Improper. loop ne5ting" error message. Reversing lines
1300 and 14011 would solve the problem.

NOTE: You c:an tiimp c}i`t of a FOR NEXT loop. but NEVER jump into the
middle of 5i`c:h a lc]op. The reason is that 5i`ch jL`mps u5uallv fail
to properly initiali=e the counter and loop limits.

1000 FOR Coi`nter = I TO 5
1100 PRINT "Counter nc)w equals ";Counter
12(10 Next Counter
1500 POINT "Counter equals ";Counter
140() END

This i irst e>:ample shc}wg a simple loop. The new value of the
counter prints each of the f ive times the program exe[ute5 the loop.
When the value of the counter reaches 6. the coiintEr fails the test
and e>:Ecution pasges oitt c)f the loop to print the End value of the
ceitnter (line lr`(lcl).

A5 with other e>:amples, feel free to modify this Example, playing
with yoiir own loop si=e5 and c:ontrol5. A more complex example
follows,

4-4 6Ril)BASIC Ref erence Manual

u

EI

n

n

Zii

loot) R.EM The outer Lc)c}p begins on the next line
1100 FOR 0iiterLoop=1 TO 5
12(trj PRINT: PRINT "Oiiter Loop number"i OuterLctop! " and cciiinting...
1300 REM The inner or "nested" loop is ne):t
140C) FOB InnerLoop=27 T0 0 §TEF. -5
1500 F.RINT Innerloop; " ";
16CIC} NEXT InnerLoc}p

1700 REM That's it for the iriner loop
lBOct PRINT

1900 NEXT 0uterLoop
200Cl ftEM And that'5 it for thE c]uter loop
2100 END

This e}:ample demonstrates ne5ted loops, use of the STEF. instri.Ic:tion
and negative STEPS. The outer loop begins at line 11(}0 and ends at
line 19()0. The inner loop beg)n5 at line 1400 and ends on line
16()0. Steps in the inner loc)p decrement by iinits of -3.

F'rc)gram Flc)w Control 4-5

GOBI,iEt r`.ETUFti`

The 60SUB statement trari5fers cc]ntrc)I to a Eubroiitir`e at spe[if led
line number. The F{ETuftN stEitement must appEar E`t the end of that
siibroi`tine artcl returri5 contrc)1 tc) the main F)rogram.

FORHAT

veTES

130SIJEl 1 irie#

sL`br c]u t 1 n e
BETUF[N

The line# is the line nilmber c)f the first lirie of the subroutine.
(A siibroutine is one or more 5tatement5 that pErforms a distinct
task). A 60§UEl jiimp5 prc}gram e>{e[ution to a 5i`brc)iitine. (This ig
Sometimes referred to as "mal(ing a si`brolitine call".)

When the F{ETURN statement i5 ericc)untered at the end cif that
subroutine, it c:ai`5es exec:iitic)n to return to the statement following
the most recent GOSUB statement. You Can have more than c)ne FtETUFiN
st.atement within a 5ubrc)i`tine for situations where you want to exit
the subroiltine at dif i erent points.

If the specif led line ni`mber c-ontains a nan-e}:ecutable statement
(for e`:ample a DATA. REM. or DIM), execution will begin at the first
sitbseqi`ent execLital]le Statement after line#.

Yell Can c:all a subroiLtine a5 many times as yc)u want. and you can
c:all c}ne subroittinE from within another. Your only limit on this
ne5ting c)+ siibroutines is the amaitnt of available memory.

4-6 6RiDBASIC Deference Manual

u

n

iii

Ziil

1000 605lJB 1900
1101) PRINT "Dive! Dive!"
12()a GOSUEl 19(I(1
lsoo GO§uB 1700
140(I 60§UB 1900
1500 PRINT: PRINT "At last. The END is in sight."
1600 END
17110 PRINT:PRINT "So this iE a '60SUB.' Time to Surface...
1800 RETURN
1900 REM The next line just loops far time
2000 FOR X-l TO 400! NEXT X
2100 RETURN

In this Example, we have two 5ubroutine5 --One l]eginning at line
1700 and the other at line 1900. We c:all the 5ubrautine three times
during program e>:ec:utian to put time between the execiition of the
print statements. Note that the 3ubraiLtine at line 1900 begins with
a HEM, not with an executable 5tateqtent.

Program Flow Control 4-7

Era-

GOTO

FOI"T

roTES

ExfpRE

This Statement c:au5e5 an un[onditic)nal transfer of Control to a
specified line number.

GOT0 line#

The GOT0 statement differs frc]m the GO§UB Statement in that it lacks
a RETUBN statement. Any return of program execi`tion to the line
follciwing the 60T0 line miist be forced by another 60TO.

If line# 5i]EiEifie5 a line containing an executable Statement, then
that Statement and those following it are exE[uted. If the
Specified line does not contain an exEci`table statement (for
example, a DATA 5tatcoent), then execution clJntinue5 at the flr5t
exe[utable Statement after tlie line 5pe[ified by line#. The
intervening lines are Simply ignored.

NOTE: Gpil)BASIC does not suppc}rt an "imi]lied OOTO" as in the example

2200 IF A=B THEN 1700

1000 PRINT "This line (1000) contains a 60TO Statement.": GOT01300
1100 Print "This is the line (110()) after the first GOTO."
1200 GOT0 1500
1300 PRINT "This i8 the first line (1300) you went to."
1400 60T01100
1500 PRINT ''The ENl). (See message belc}w.)": END

In this example, program e}(eciitic]n jumps from line 1000 down to line
1300. It then jiimp5 bac:k up to line 1100. E>:ecution moves 5traiglit
down from llCto to 1200 where the final 80T0 appears, 5Ending
execution to the last line.

To understand the term ''infinite" loop, remove line 12110 from this
program and watch what happens. Remember: Pressing ESC will stop
any such loop.

4-8 BRiDBA§IC Reference Manual

EI

u

U

ZiE

rl

ZiE

IF THElu [ELSE=]
These Statements allow the conditic)nal e}.:ecution of One of twc]
Statements or a 5erle5 0f Statements, based on the result of an
expression evaluation.

FofunT

NOTES

IF e>:pres5ion THEN 5tatementl[:5tatementla:5tatementlb ...][EL§E
statement2] [: statement2a: statement2b . . .]

If the expression following IF is true (nc}t zero), the statement
following THEN e>:ecLite5. If an ELSE statement e}:ists, execution
5kip5 it.

If the result of the expression Evaluation i5 false {zero), program
execution skips any statenent(5) following THEN and executes any
ELSE statement(s). If no ELSE statement e}{i5t5, exe[Lltion goes to
the ne>:t line number.

ELSE 5tatementg are clptional. An ELSE statement Only e>:ecutes when
the IF statement evaluates Bs zero (false).

Look at the fcillowing example:

1000 IF A=EI THEN PRINT ''Equal": 60T01500 ELSE PRINT "Unequal"
1100 60§UB 2000

If A does equal 8, then the computer will print the word "Equal" and
it will jump to line 1500. However, if A does not eq`ual a. neither
the THEN Statement nc}r the GOT0 will execute. Instead. the prc}gram
will e>:ecute the ELSE Statement and print thEt word "Unequal" befc)re
cc)ntinuing tc) line 1100.

You Fan follow the THEN and ELSE 5tatement5 with a5 many statements
as yoii want. The statements must be Separated by colons (:) and can
be either on the Same line or on a new line. If on a new line, the
statements cannot have a new line niimber; they are Eonsidered part
of the Same line a5 the THEN or ELSE statement.. Thus bc)th of the
fc)llowiriq sequences are valid:

1{111 IF A=B THEN C=D:

E=F
ELSE J=l,::

2(,0 . . .

1C)() IF A=B THEN C=I):E=F ELSE J=h:

Prc}qram FIE)w Control 4-9

NDtE the ab5enc:e of a c:olon between E=F and ELSE in the sec:end
example. The ELSE Statement (if present) i5 also considered to be
part c]f the same line a5 the IF and THEN statements and should not
be Separated from the preceding statement by a cc)lc)n nor 5houlcl it
have a new line number. Therefore, the following sEqliences are
i nva I i d :

lclo IF A=B THEN C=D:E=F
20ci ELSE .=r.<

and al5c)

1{lcI IF A=B THEN C=I):E=F:ELSE J=K

You can nest IF THEN ELSE statements to any depth: you are limited
c]r`ly by the amoiint of available memory. If the statement does nc}t
contain the same nlimber of ELSE and IF THEN c:lauses, Each ELSE is
matched witli the clc}5est unmatclied IF THEN.

NOTE: The word "THEN" miist always follow an IF clause. The
follciwing statemEnt, omitting THEN, is not valid.

2200 IF A=B 60T0 1700

10110 EvenS="Even §teven! ": OddS="Odd Badkins! "
1100 INPUT "Try Some Conditions (Y/N and confirm)";Answer$
1200 IF AnswerS="N" THEN PRINT "Whatever you say."i B0T01600
1300 INPIJT "Type any integer and confirm (E§C to stop):",NLimber
1400 If Niimber MOD 2=0 THEN PRINT EvenS ELSE PRINT 0ddS
1500 GOT0 1300
1600 END

This example contains two IF THEN statements --line51200 and 14{)0.
The line 1200 statement lacks an ELSE, but attaches a Statement
after THEN. If the c:ondition i5 true, both will execiite. The
me55age "Whatever you say, " pririts and the program jumps to the ENI)
Statement. However, if the statement evaliiates aB false. then
execution falls through to the next line (1300).

Line 1300 contains a straightforward IF THEN ELSE Statement. If the
module test yields a 0, print the string variable for "even." If
f al5e, ELSE prints the "odd" String.

NOTE: The E§C key function mentioned ill line 1500 comes frc)in the
5y5tem, nc}t from this program. Remember: You can press E§C tc} halt
execution of any 6RiDBASIC program.

ExfwRE

4-10 BRiDBA§IC Re+erenc:e Manual

RE

EI

n

Eiil

Zii

131` GOT0 and DN GC)SUE3

These Statements cause an L`nconditional transfer of c:ontrc)I to One
of several spec:if]ed line numbers. The partic:tLlar lines depend on
the resi`lt obtaiiied by evaluating the e>{pre5sion following the ON
Statement.

F0fvAT

NOTES

ExfpRE

ON express)on COT0 line#[,line*J...
and
ON expression GO§UB line#[,line#]...

ON GOT0 does in one Statement what IF Tt.lEN would take numerous
5tatement5 tc) achieve: it takes an expre55ion and u5e5 its value to
Send program e}{ecution to a particular line number.

In the example below, if the variable ANSWER evaliiates to 2, program
executic)n jiimp5 to the Second line number in the list, 15(10.

500 0N Answer B0T01000,1500,2000

NOTE: 6Ril)BASIC rounds thE e:.:pre55ion value to an integer, i+
necessary. If the expression value i5 zero, c)r if it i5 greater
than the number of line nulTibers in the list, e>:ecution Simply
continues with the next e}{ecutable Statement in the program.

LOGO INPUT "Enter a nilmber from I to 5 and c:onf irm",A
11()a 0N A 60T01200, 130C),14()C), 15C)0, 1600
lllcI PPINT "Your entry i5 out of range.'': B0T011100
12{)0 PRINT "ONE": 60T01000
1300 PRINT "TWO"= GOT01000
1400 PRINT "THF{EE": 60T0 1000
150{) F'RINT "FOUR": Gt]T010C)0

16¢0 PRINT "FIVE": 60T0 1000

This e}{ample prints the name of the number given the INPUT
statement. This is a typical use for ON 60T0 in that particiilar
values must connect with particular items. A more comple): e}:ample
might c:onnec:t a lJ.S. Pre5ident'5 order ill the Presidency witli hi5
name-

If you enter a number greater than f i`'e or less than c}ne, e}:ecution
will drop through the ON 60T0 statement to the ne>{t line, an error

Program Flow Control 4-11

mes5aqe and a GOTO Sending execution ba[l: to the INPUT Statement.

Note the 60TO 5tatemEnt5 follc)wing each of the line rtimber5 in the
list (120(I-1600). Withoi`t Such an ending Statement (you [ould use
END, toci) , executic]n [ontiniies and prints all sllbsequent ni`mber5.
Hardly our piirpcise.

When you riin this prc)gram. qive it 5Dme out of range nimbers and
some decimals to see what happens. An E.>:ample of ON 60SUB fcillows.

loot) INPUT "Enter a number frc}m i to 5 and c:on firm",A
ll()Ct ON A 00§UE 150C), 14()0, 1500, 1600, 17C)O
12(to IF A<1 0R A}5 THEN B0T0 1800 ELSE GOT0 i(I(to
1300 PRINT "ONE": RETURN
140{) PRINT "TWO": RETUF{N

lil:)a PRINT "THREE": RETURN
1600 PRINT "FOUR": RETURN
1700 F'RINT ''FIVE": RETURN
l8(to PFilNT "Out of range": GOT0 1000

This is the Same prcigram exc:ept that an CIN GOSUB Statement gulde5
excecution tc) the prc)pEir line number. And be[ause this i5 a 60§UB,
a RETURN statement must end the One line subroutine.

RETURN sends e}:ecution to line 1200. To accc}mc)date tlli5, and still
be able to i55ue an "Out c)f range" message, line 1200 contairi5 a new
logic. It c:hec:ks to See if the input is .Jithin range. If it is,
the program loops to the fir5t line again. If not, execution goes
to the error message on line 1800 before gc)inq to the fir5t line.

4-1£ GF:iDEIASIC F:eferEnc:e Manual

u

-.I

EI

ST0F'

F-T

veTES

ExfyRE

rl

•iiE

Zil

The STOP Statement 5usper`d5 program e}:e[utian.

STOP

The STOP Statement 5115pends program without clo5ing any files. STOP
serves as a good debugging tool; you can halt e}:ecittion, c:hec:k the
status of variable5, and then continue. You continue program
exec:ution by pre5sinq Cot)E-C (the Continue command). Pressing any
key return you to the program ed)tor.

When a §TOF' i5 encountered. the fallawing message appears:

Program stoF)ped at line nnnn

where nnnn is the line number where the STOP was encountered.

loco AS= "Hit the brake5! I I
1100 ES= " There's a STOP line just ahead."
1200 CS=AS+BS
1300 PRINT "Screeeeeeeeec:h"
1400 STOP
1500 PRINT CS

This example dec:lare5 and conc.atenates two String vari;bles. The
STOP at line 1400 gives you the Chance to preview the cancatenatic)n
before executing it. By enterirlg the direc:t mode and typir`g "PRINT
CS," you can see what CS looks like. Press CODE-I to continue.

Program Flow C:ontrol 4-13

WHILE WE=luD

These Statements create a program loop that continiies tc] e}:ecute as
long as the WHILE statement evaluates as true.

F-T
WHILE expression

statement(s) ancl/or func:tions

WEND

NITE§

EXArRE

If the result obtained IJy evalL`ating the expression is true (riot
zero). the statement c}r statements between the WHILE and WENI)
statements will bE exec:Lited. WEND returns e}{ecution tc) tlie WHILE
Statement for another evaluation of the expression.

The intervening statements exec:ute until the expre55ion evaluates to
zero (false). If the expre5sic)n evaluates to zero the first time it
is encountered, then the intervening statemEnt5 will not execute at
all. After the exprE55ion evaliiate5 to zero, e}:ecution continues
with the first executable Statement following the WEND Statement.

You can nest WHILE WEND statements tci any depth; you are limited
only be the amount of available mEmory. Program executic)n matches
eat:h WENI) with the most recent WllILE. If yc}u have unequal numlJers
of WHILE and WEND 5tatEmE.nt5, an error will occitr --"Improper lc)c]p
nesting error. "

If you write FOR NEXT lciops inside of WlilLE WENI) loops (or vice
ver5a), be 5itre the inner loop lies entirely within the oliter loop.

100[1 LET BiiessMe=TRUNC(5*END(l)+i)
1100 WHILE User6Liess {.i Gues5Me
1200 INPUT "Bue55 a nLimber between 1 and 5"iuser6ue55
1300 WEND

1400 PRINT ''You got it! The number was ";GuessMe
1500 INPIJT "Want tc} try again (Y or N)'';YesNOS
160{) IF YesNc)S = "Y" THEN 60T0100CI ELSE PRINT "Okay. bye.I": END

This e}:ample i5 a guessing game that asks you to enter a ni`mber.
The WHILE Statement then tests to seE if you que55Ed correctly. If
the number qualif ie5, program e>:e[iltit]n falls through the WHILE WENI)
loop to the message. If the Eompari5c]n fails. exeEutic]n 5tay5
within the WHILE WEND loop. a5king fc}r another input.

4-14 BRiDEIASIC Reference Manual

u

u

Riil

Zii

rl

ci+APTEFt FlvE: GFtiDBAslc ARITiRETlc AND Leslc

Thi5 chapter de5c:ribes GFi!il)BASIC.`5 arithmetic: Statements. functions, and
cc)nstants. Chapter Five also discusses the GRil)BASIC's four logical operators
--AND, NOT, 08, ancl XOR --plii5 its two Boolean constant5, TRUE and FALSE.

Additionally, it covers the two integer operators: integer division and M0I).

NOTE: Althougli not clocumented like other operators, 6RiDBA§IC hag the four
essential arithmetic:

+ (Addition)

• - (Subtractian)

• * (Multiplic:atian)

. / (Long I)i,`ision)

See Chapter Two for cletail5 on precedence among arithmetic, relational, and
logical operators.

This chapter opens with a disc:i`sgion of 6FziDBASIC'5 six integer functions. It
also di5cusse5 them individually within the chapter.

Arithmetic and Lc)gic: 5-I

INTEGER FLMTIO^l§

GRiDBA§Ic has six ways of converting floating point numbers to |J
lnteger5:

CINT

FIX

INT

R0lINI)

TRUNC

I Assignment of a value into an integer variable (§ymbalized a5
VAR./. below) .

Table 5-1 below illu5trate5 how 6RiDBA§IC applie51t5 variolls
functions to converting f loating point nLimber5. NOTE: To ensLlre
act:urat:y when converting dec:imal5 tc) inteqer5. choose either
ROUND or TRUNC. BRiDEASIC includes the CINT, FIX, and INT
func:tit.ns for compatibility with other BA§IC's. The table below
shc"5 that FtouND pert Drms the same as CINT ar`d TRUNC acts like
FIX.

c[NT F]xFUNCT::¥ RouND TRUNc VAR./. L'
__--_--__-------------------------r.------------___

-3. 50 -4 -3 -4 -4
INPUT -5. 49 -S -3 -4 -3

3.49 3 3 3 3
3.50 4 3 3 4

33000. 00 -32556 -32536 -32536 53000

Table 5-i. A Table of Integer Func:tion5

-3-4
-3-3
`3S

34
33000 -32536

A discussion of each of 6F{iDBA§IC's arithmetic fitnctions begln5
on the next page. NOTE: 6Ftil)BASIC cannot guarantee a[c:itrate
integers whenever you give it a number that e}:ceed5 the
IJoiindarie5 c}f integer aritlimetic: -32768 tci +32767 inclu5i`/e.

5-2 GRiDBASIC ReferencE Manual

u

f>8§

Ft"T

InoTE§

EXA-

ZiEi

rl

n

This function returns the absolute value of its expression.

AB§ (ex pr e59 i on)

The absolute value of the expression is the value un5igned. ABS
strips away the minus sign of negative numbers. The ab5alute
value of a number is always positive or zero.

1CIO0 INPUT "Enter a number and conf irm",A
1100 B=ABS(A)
120CI PRINT "Absolute value i5 ":I
1300 60T0 1000
14110 END

Arithmetic: and Logic 5-3

fiC0S

FORmT

NOTES

EXA-

Tlie arc: cosine fi`nction.

ACO§ (ex pressi on)

This function takeg an expre55icin repre8er`ting an angle in
radiang and returns its arc cosine (in the range of 0 to pi)
BRiDBASI[evaluates thig e>ipres5ion in full prec.igion. To
convert fran degrees to radian5, multiply by pi/loo.

1000 INPUT "Enter a number between -1 and l"iNumber
1100 PBINT
120Ct Rad5=AC05 (Number)
1300 Degrees=Radsl(lBO/PI)
1400 PRINT .'The arc Cosine of "; Number; " is ";Degrees; "
degrees"
150(I PRINT: PRINT
1600 GOT0 lcloo
1700 END

5-4 6F{i DBASIC FiefE.rence Manual

u

u

u

f>ND

FOFVAT

veTE§

iii

rl

n

Exf-

The logical operator far Conjunction

expressionl AND expre5sion2

The AND function unites elements, calculates their combined truth
valile, and issues a Elot)lean true or false. A5 the AND truth
table (Table 5-2 below) shows, ANI) only issues a true (nan-:era)
when both elements are trite.

A ANI) 8

Table 5-2. The ANI) TrLith Table

1000 PRINT "Separate the twc) numberg with a comma'':PRINT
ilo() INPIJT "Type two numbers between 1 and 5"; A,B
1200 IF A=3 AND 8=4 THEN PRINT "You win!" ELSE PRINT "Try again"
150(t PRINT:60T01100
14CIO END

A51ong a5 you enter t]oth elements correctly (5,4), yc]u win. Any
other combination fails.

Arithmetic arid Logic 5-5

f}S I N

Font

NOTES

EXAmE

The arc sine flinction.

A5IN(expression)

This func:lion takes an expre5sian representing an angle in
radians and returns tlie arc sine of that angle. 6Bil}EIA§IC
evaluates this e}:pression in full precision. Arc sines f all intc)
the range of -pi/2 to pi/2. To Convert from degrees tc) radians,
multiply by pi/180-

1000 INPUT "Enter a number between -1 and I"iNumber
1100 PRINT
1200 Rad5=A§IN(Number)
1300 Degree5=Rads* (loo/P])
1400 PRINT "The arc.Sine of "; NLlmberi " is ";Degrees; " degrees"
1500 PRINT: PRINT
160Ct 80T0 lcloo
1700 END

5-6 GRiDBASIC Ref eren[e Manual

•-.I

u

u

f}TN

FofunT

NOTES

EXArfu

•-,

Rii

a

The arc tangent f unc:tion.

ATN (ex pr essi cin)

This functic)n takeg an expression representing an angle in
radian5 and returns the arc tangent of that angle. 6Ril}BASIC
always evaluates thig expression in full precision. The result
falls in the range of -pi/2 to +pi/2. Tc) convert from degrees tiJ
radians, multiply by pi/loo.

loco INPUT "Enter a number ";Number
1100 PRINT
1200 Rad5=ATN(Nimber)
1300 Degreeg=Rads* (loo/PI)
140C) PF2INT ''The arc tangent af "; Nunber€ " is ";I)egree5; "
degrees"
1500 PRINTS PRINT
1600 60T0 1000
1700 ENI)

Arithmetic and Logic. 5-7

C=1}EIL

FORAT

NOTES

EXArRE

The convert tc} double precision Statement

CDBL (ex pressi c)n)

Because BRiDEA§IC performs all t]perations in doublE pre[i5ion,
this Statement does nothing. It exists only for [ompatibility's
Sake. See C§NG belt)w.

1000 LET §ome=CI)BL(4)
1100 PRINT Some
12CIO END

Put any number you want in the parentheses. Line 1100 di5play5
it just a5 you entered it.

5-8 BRiDBA§IC Referent:e Manual

u

u

u

C I IUT

FORAT

NOTES

. EXAtne

ill

ill

n

The C]NT (Convert tc) integer) fi`nction c:c)nverts an e}.:pre5sion to
an integer.

C I NT (ex pe55i c}n)

CINT pert arms the c:onversion by rounding the fractional portion
of the number.

NOTE: This fiinction i5 identical to the 6Riz)BASIC'5 ROUND
func:tion described later in this chapter. The existence c]f bc)th
funt:tions enhanc:es the compatibility of BRil)BASIC with other
BA§IC's. See the di5cu55ion of integer functions at the
beginning of this chapter.

1000 INPUT "Enter any number and conf irm", Deciil`al
1100 Answer=CINT(Decimal)
1200 PRINT "The CINT integEr is ";Answer=;PRINT
1500 GOT0 1000

Arithmetic and Logi[5-9

COS

FunT

NOTES

EXAmu

The cosine fiinc.tion.

COS (e}: pr ess i c)n)

This function takes an expression representing an angle in
radian5 and retitrns the cc)siiie of that angle. 6RiDBASIC always
evaluates this expre55ion in full precision. Tc} convert from
degrees to radians, mi`ltiply by pi/leo.

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 ftad5=Angle*(PI/180)
1200 Calculation=CO§(Rads)
13CIO PRINT ''The c:osine of ";Angle;" degrees i5 "i Calculation:
PRINT
1400 GOT0 1000

5-10 6RiDBA§IC Reference Manual

EE

BE

u

CSIVG

F-T

EXArFLE

rl

Zii

ZiiE

The convert to single precision Statement

C§NG (Ex pr eg5i c]n)

Eec.au5e 6FtiDBASI[performs all operations in double preEi5ic)n.
this statEment does nothing. It e>:i5ts only fc)r c:ompatibility.`s
sake. SEE CI)BL abc)ve.

1000 LET §ame=C§NG(4)
1100 PRINT Some
120CI ENI)

F'ut ally number you want in the parentheses. Line lltlo displays
it just a5 yoii entered it.

Aritlimetic: and Logic 5-11

EXP

FOFmT

veTE§

EXAmE

The Exponent)al function. referred tcl in matliemati[5 a5 "e."

E X P (e}: press i c}n)

In 6RiDBA§IC, a natural logarithm hE15 a base of

2 . 71 8281882845905

The EXP function raises this base number ta the pc]wer given as
its expre55ion. Thus

EXP(2)

equal s 2. 7182818828459{15 Squared.

LOG is the inverse function c)f EXP, as demonstrated by the
example program below. Far this reason "the Exponential of " and
"the natural antilogarithm of" are Synonymous phrases.

If the expression evaluates to greater than or equal to
approximately 200, an overt low oc:Eiirs.

1000 INPUT "An exponent please":Anex
Ill.10 LET Answerl=EXP(Anex)
1200 PPINT "The natural log's value raised to the pc}wer ";Ane}::"
is":. PF{INT Answerl: PRINT
1300 Answer2=LOG (Answerl)
14(10 PRINT "The natural log c}f this number i5 ";Answer2: PRINT
1500 An9wer3=L0BIO (Answer i)
1600 PRINT "Its log tc) the base 10 is ";Answers:PFtlNT
17Clo GOT0 lot-10
180(I ENI)

5-12 GF`.il)BASIC fief erence ManLial

u

rl

1

lil

Ff}LSE
The Bc}olean Constant for false.

FORMAT

lvaTES

EXArfLE

FALSE

The Eon5tant FALSE has a `/Slue of 0. State.i}Ents c:an lot,Erac:t
with it in a number of ways. You can as5ign its `/Blue to
variable5, operate it on it logiEallv. iJrint it. The program
below dc)e5 all tllE5e things.

i(:Icl{l F.ftlNT "True=":TRUE: " and False=":FALSE
1100 INPUT "T`,,'pe the number :`"; A
l£C){l IF A=3 THEN B=TRUE ELSE El=NOT TftljE
1=`00 F.ftlNT a:
1400 IF B=FALSE THEN PRINT " means `/c)u didn't type 5" ELSE POINT
" means you typed 5"

15(.1CI PRINT:GOT011{10

16®0 END

Line i()(:10 prints the values c}f GRiDBASIC's two Doc)lean c.on5tarits.
Whenever you use TRUE c)r FALSE. you use the constant`5 `/alue.
For e.¥ample, depending on the `/ali`e of A, line 12(1(I does one of
two things. It either assigns -I tc) E` (TRUE) or applie5 NOT to
TF{UE, chanqinq tlle -1 tc) its opi]osite. a Zero (0). Note that
although the program never assiqn5 "FALSE" to the varlable 8. it
can evaluate a as "FALSE" (line 1400}. if in line 12()a EI proves
to be "NOT TRUE."

Arithmetic and Logic 5-13

F-IX

FOFunT

NOTES

EXAMPLE

The FIX +i`nction cc}nvert5 an e>(prEs§ion tc) an integer.

F I X { ex pre5si on)

This filnctic)r` Converts an e}:pre55iort to an integer by removing
all nL`mbers to the right of the decimal point. The difference
between this fL`nctic}n and the CINT and INT fuilctic}ns is that FIX
clc]es not rctund negative numbers dowr`. Thus -2.5 and 2.9 both
bec:one -2.

Thi`s FIX (an "impc)rt" from otlier EIASI['5) wc]rks like 6ftiDEIA§IC..s
own TRUNC func:tion. See the Section at the bEqinning of this
c:hapter, c.omparing the different intecier functions. Also See the
TRUNC fi\nc:tion later in thi5 c.tiapter fc}r more details.

1CICIC) INF'UT "Enter any rii`mber and con+irm", Dec:imal
1100 Answer=FIX(Decimal)
1200 F`RINT "The FIX integer is ";Answer :PRINT
150(t 60T0 lot:t(I

5-14 GRiDBA5IC Ref erence Mani`al

u

u

INT

FORMAT

NOTES

r

n

Eii

EXAMFu

The INT functic}n converts an e;:pre55iDn tc] an Integer.

I NT (i,`: i]e55 i c]n)

8RiDBASIC pEr{orm5 the I:onver5ic)n by rc)undina dc}wn the i ractional
portion of the number. Thus a po5itive whc)le number remains the
Same regardless of the value of the nLimber to the right cif the
decimal pc)int.

In the c:age of negative numbers, however, INT rc)und5 the number
tc) the ne}:t Smaller whole number. Thiis with INT -2.5. -2.Fj, -I.9
all bet.one -5. Eec:au5e of thi5 ac:tic)n[INT i5 5c}metime5 refer-red
tc} as a ''floor function."

GRiDBASIC incliides INT for c:c)mpatibility with other BASIC.`5. Sea
the artic:le c]n integer functions at the beginning c]f this c:hapter
fc}r more informatlon.

10Clt:I INPUT "Enter any nLimber and c:tjnf irm". Decimal
11{10 An5wer=INT(I}ecimal)

120C) PftlNT "The INT integer is "i Answer: PFl.INT
13,JC) 60T0 i('C)0

Arithmet}.= anc] LOQlc 5--15

IN|-E=6EF: DIVISION {\)

The inteaer di`tisicin operator.

FO"T

roTES

EXA-

dividend \ cl)visc}r

Integer divi5ic}n acts like ordinary division (/`) in that it
delivers a quotient. Urtlilf.e, ordinary di`7ision. it dc)e5 not
issue a remainder. Thus the operation

PRINT 5\.I

yields 2, not 2.5. NOTE: You mar`e a back slash, the inteqE)r
division Sign. by pressinq the CODE-SHIFT-' [c)oblnation.

The MOD funEtic)n is jtjst the oppc)site of integer division; it
Firints the remainder, but not the qiLotlent. (See MOD later in
this c'hapter.)

loot) INF'UT "Divide 51 by what ni`mber"; Divi5c]r
ll(to LET 0uc]tient=51\Divisor
12Clo LET F{emainder=51 M0l} Divisc)r
1=`f)t) .PRINT "The qiiotient i5 ":Cilotient; " with a rEmairider of
" i Renal ncler

14Cto PRINT: B0T0 1000
1500 ENI)

This example 5hc)ws the integer cllvl5ion quotient and the MOD
remainder that result from clividing 51 by yoiir input divisor.
The second example a5k5 `/ou for both the dividend and the
divisor; it then calciilates the re5ult5 from f loating pc]int
divi5ion. Integer clivi5ion, and MDI).

10(JO INPUT; "I)ividend":N
11Cl{l INPUT " Divisor":D
120{) PRINT "FPDiv=";N/I).
13C)C) PRINT "IntDi`/=";N\I),

14(:){) PRINT "M0I}=";N MOD 0

15f:t() PFilNT: 60T0 10(10
160{) END

5-16 6f`iDBASIC Reference Hanual

u

u

u

LOG

FcmT

NtrTES

EXAMPLE

i

1

EiEl

The (natural) logarithm fun[tion

LOG (ex pre55i on)

This functicin returns the natural logarithm of an expression.
The value of the expression must be a positive nuol)er greater
than zero.

lctoll INPUT "An exponent please";Anex
1100 LET Answerl=EXP(Ane>:)
12()0 PRINT "The natural log'5 valile raised tc} the power "iAnex;"
is": PRINT Answerl: PRINT
1311(1 Answer2=L06 (An5werl)
1400 PRINT "The natural log cif this number is ";Anal.ier2: PRINT
1500 An5wer3=L0610 (Answerl)
1600 PRINT .'Its log to the base 10 is ";An5ner3=PRINT
1700 GOT0 1000
loo(' END

This example calculatEg the exponential of a nilmber, its inverse
(the LOB), and finally, the common logarithm (ta the base 10).

Arithmetic and Lc)gic 5-17

LOE51 C,

Lc}garithm to base 10.

FOFVAT

NOTES

EXAtRE

L0B1 {l (ex pre55i on)

This function rEtiirn5 the lc]garithm to the base 10 of an
e){pre59ion (NOTE: Natural logarithms have a base cif 2.718). The
lcig to the base 10 is the number to whic:h yell have to raise 10 to
get a particular nimber. Thus log of 1000 ig 3. because 103
yields 1000

The value of the e,`presgian must be a positive nimber greater
than zero.

1000 INPUT ''An exponent please";Anex
1100 LET An5werl=EXF'(Anex)
12011 PRINT "The natiiral log'5 value raised to the power ";Anex;"
is": PRINT Answerl! PRINT
1300 An5wer2=LOG (An5werl)
1400 PPINT "The natural log of this number is ";Aiigwer2: PRINT
1500 Answer5=L0Blo (Answer I)
1600 PRINT "Its log to the base 10 i5 ";Answers:PRINT
1700 GOT0 1000
1800 ENI)

This example calculates the exponential of a number, itg inverse
(the LOO), and finally, the common logarithm (tD the base 10).

5-18 BRiDBA§IC Referenc:e Manual

EEZ

u

rlDD

FOF"T

NOTES

EXA-

ZiEI

n

rl

The modulc} operatc)r.

dividend rl0D divi5c]r

The modulc) function (MOD) prints the remainder of a division
operatic)n, IJi`t not the qiic}tient. This makes it the Dppo5ite c)f
the integer divi5ian operation, whit:h prints the quotient. but
not the remainder. (See Integer Division earlier in thi5
chapter .)

MOD rounds its operands to integers. It then performs f loating
pc)int division and throws away the resulting quotient.

lot)O INPUT "Divide 51 b`/ what number": Divi5c)r
1100 LET Quotient=51\Divisor
12(10 LET Bemainder=51 M0I) Divi5or
1300 PF{INT "The qiiotient is ";CulJtient; " with a remainder of
" ; Remai nder

1400 PRINT: GOT0 1000
150C' ENI)

This e,`:ample 5how5 the integer divi5ion quotient and the MOD
remainder that result from dividing 51 by yoiir input divi5or.
The Second e}:ample a5k5 you for both the dividend an`d the
di`/i5or; it then c:alc:ulate5 the results from f loatinq point
clivision, integer divi5ion, arid MOD.

1000 INPUT; "Dividend";N
110{1 INPUT " Divi5c]r":D

1200 F.RINT "FPDiv=";N/I).
131:)1') F'F3INT ''Intl)iv='':N\D,

14!:Jt:I PRINT "MOD=";N MOD I)

15CIJ`-) F`RINT: GOT0 lcl(10

16C)0 END

Arithmetic: and Lc)c]ic. 5-19

luoT

F-T

NDTES

EXAMPLE

The lc}gi[al operatc)r fc)r negation.

NOT expreg6ion

NOT is a unary aperator that reverses the truth value of the
operand (e}{pre5sian) it addresses. The NOT truth table (Table
5-S) l]elow illustrates this.

Table 5-3. The NOT Truth Table

1000 PRINT ''§eparate the two numbers with a comma":PRINT
1100 INPUT "Type two numbers between I and 5'`; A,a
1200 IF NOT(A=3 AND 8=4) THEN PRINT "Try again" ELSE PRINT `'You
wi n ''
1300 PRINT:80T0 1100
1400 END

Compare this example to the e>{ample far ANI). To get the Same
evaluation, the results ("Try again" and "You win" are reversed.
This Suits NOT'5 ac:tion on truth valiie5. Also see the logic
examples under "Logical Operators" in Chapter Two.

5-20 BBiDBASIC ReferEnce ManL`al

u

EI

OF3

FOFRAT

IroTE§

EXArfu

1

iiE

a

The loqical operator for disjunction.

e}:pres5ionl 0R expression2

OR linh's two expre55ions and i55ue5 a true when both expre55ion5
evaluate as true or when jii5t one evaluates as true. Both
expres5ic)n5 must be false for OR to issue a false. See Table 5-4
below. Cc]mpare this action with X0ft (Described at the end of
this chapter), which yields a triie ctnly when just one af tlie two
e}:pre5sians is trile.

A 0F' 8

Table 5-4. The OR Truth Table

1000 PRINT "Separate the two numberg with a comna'.:PRINT
1100 INPUT "Type two numbers between I and 5"; A,8
1200 IF A=5 lJR 8=4 THEN PftlNT "You win!" ELSE PF{]NT .'Try again"
13(10 PRINT:60T01100
1400 END

You win if you type 3 as the first number of the pair, c)r if you
type 4 as the se[or`d number, or if you type both correctly (5,4).
Also see the lcigic examples under '.Logical Operators" in Chapter
Two,

Arithmetic and Logic 5-21

F]I

FOFunT

NOTES

EXArfu

The pi constant.

PI

PI is not a fiinction, but the mathEmatical constant repre5entinq
the ratio of the circumference to the diameter of a circle.
GFtiDBA§IC keeps PI eqilal to

3.14159265358979

1000 PRINT "Note: Pi equals "i F.I: PRINT
1100 INPUT "Enter the radius cif a circle and conf irm"; Radius:
PRINT
12Clo Cir[=2*PI*Ftadiu5
13{10 PRINT "The c:ire:umference of the circle is "icirc: PRINT
1400 Area=PI*Radiu5^2
1500 PRINT "The area of ttie circle ig "i Area: PBINT
1600 B0T0 1100

This example puts the PI function to work in two Common formulae,
those for the cir[unference and area of a circle. It also prints
the value of pi (see line 1000).

5-22 6Ri DBA§I[F{eference Manual

EI

u

`J

n

n

A

F=f}ND0II I Z E

RANDOMIZE 5eed5 the RND nllmber generatc}r.

F-T

veTE§

EXAtRE

RANDOMIZE [exprE5sion]

This statement gives the random number qeneratcir a spe[if ic: Seed
to work with. END takes each seed and from it c:reates a known
9erie5 of numberg. Therefore, placing RANI)OMIZE bet ore a RND
statement yields a repeatable series of numbers.

RANI)OMIZE without an expre55ion, Sends the ENI) function bat:k to
the realtime Clock for its Seed. See the RND statement,
described next, for further details c)n random numbers.

1000 RANDOHIZE 101
1100 INPUT "Loop times";Number
1200 PRINT: PRINT
1300 FOR X = 1 T0 Number
1400 PRINT ,lo*RND(i)
1500 NEXT X
1600 PRINT: PRINT
1700 B0T0 1{100
1800 END

In this example, the expre59ion "101" cau8eg the Same series of
random numbers to print, no matter when or where you use it. Try
other expressions. Yoll can treat these expressions a5 if tliey
were labels for certain 5erie5.

Arithmetic. and Logic 5-23

FIlu1}

FI"T

NOTES

The RND function retiirn5 a random number between 0 and 1.

RND (ex preg§i on)

The RNI) fun[tic]n tan generate three types of 9erie5 ef randc)in
number each time you FUN a F)rcigram, depending c)n the type of
expregsian you give it. The three eh'presgion8 and their products
are:

I A number less than zero (-1). This expre85ian reseeds the
random number generator every tenth of a second f rc)in the
realtime clock. Thus it has the effect of producing groiips of
twc} or three random numbers. See Figure 5-i.

I Zero. This takes the mci5t ref:Erit number generated in the
current 5erie5. If produced by a lc]op, the 9ame number ot:curs
repeatedly.

• A number greater than =erci (+i). A 5eqiience af random
numbers.

Figure 5-I below 5hciw§ a typical run of the three types. Yt]u can
f ind the program that gerierated these numberg irt the Example
Section below.

I.h.n the ap-ounn¢ < e . . .
a ee3i i589227i3
0 . 99esee4.2s I I 6.
a . 9986ee4425i i 64
0 . 99®6ee4425 I I 6.
a 898eeg73373oo7

I-hen th. .rguei.nt - a . . .
a . 89c06?73373ee7
a 8geeeg73373ee7
0 . eg886g73373co?
a I 8gso6973373ee7
e I 898es9733?3OO?

l`hen th. .rouoent > 0 . .
0 . 675394827 i 9 I se
e . 1 3 I 8532ce20935
a 74769207293812
e 4i6i8982223239
e . 8 I 4s62287327ee

Figure 5-1. Three Types of Random Numberg

NOTE: To Create a repeatable series of randc}m nLimbers, place the

5-24 GRil)BASIC Reference Manual

u

EI

ill

1

RIB

RANDOMIZE Statement (See above, this c:hapter) with the RND
function,

To c:reate a random whc}le number. simply multipl`/ the F{NI) {unEtion
by Some intEger. The Integer qi`/e5 the uppermc}st vE`1ue the
functic)n c:an return. Remember: RNI) returns numbEr5 between Cl and
i. Ten times one equals tan, the largest number that line 1=.a(I
below permits. The iJrcigram in Figure 5-2 retiirns the c:olumn of
figlires at its right.

lcIOO INPUT "Loop times";Number
1100 PRINT: PRINT
1200 F0l] X = 1 T0 Number
1300 PRINT, 1(l*RND(1)
1400 NEXT X

15C)0 PRINT: F.RINT
160() 60T0 10('0
1700 ENI)

1 . ©[1343]2?99£'676
4 . a2 i 5 i 522©g7434
9 . S29556?2541 39
7 . 92690928511482
6.C1456244754?112
I . 5i72©4547i8a53
I . 858854®4?45556
6 . 4:,£s87?69eg3g5
a . €952B 1 0376 1 349
5 . 4s76©2@447©a93
a . 4489=@4£428881
8 . 7191 :.77019913
4 . 73:.34e5923E,52=
9 . 83S864?2S7?88S
4 . 130617227435?2
2 . 3a 1 78@7£'7g:I:,34
? . 441519?9E:59091

Figure 5-2. A Program and Series of Random NumbErs

To turn a whole number intl] an Integer, we recommend submitting
the RNI) function to either the F{OUND ar TRLINC function. In
particular, when you want a range extending from I to n, try

TRUNC (ex pressi on) + i

lf you want a number in the range of a to n or in a range af
numbers (nl to n2), choose

R0llNI) (ex press i on)

These two func:tions act differently to I:reate an integer. ROUND
rounds all decimals of .5 or greater L`pward. TRUNC, t]n the other
hand. just cuts the declinal portion off . Table 5-5 below gives
several examples yc}Li can use as models.

Arithmetic and Logic 5-25

Range tJf Integers

0 to 10

i tc) ill

i to 11

87 to P5

EXArRE

Example Func:tiori

ROUNI) (10*F{ND (1))

ROUNI)(9*RND(1)+1) or

TRUN[(i C)*RND (i) + i)

ROUND(lo*F{ND(1)+1) or

TRUNC (11 *FtND (1) + 1)

ROUND (8*RND (1) +87)

Table 5-5. A Table of Integer flanges and Functions

The E>:ample sEction ct}ntains a program illLi5trating ranges a to
10 and 87 tc} 95. In the last range (87 tc) 95), we didn't
multiply RND by 137, because that wol`ld produce all
from Cl tc) 87. Instead, we multiplied by the width
(8) and added the beginning nLimber of the range.

1000 PRINT: PRINT "When the argument {: a ...
1100 FOR X = 1 TO 5
1200 Pft]NT RND(-i)
1300 NEXT X
1400 PFilNT: PRINT ''When the argument = a ..."
1500 FOR Y = 1 TO 5
16C)O PRINT RND(0)
1700 NEXT Y
1800 PRINT; PRINT "Wlien the argument i. 0 ..."
1900 FOR Z = I TO 5
2000 PRINT RNI)(1)
2100 NEXT Z

the numl]er5
of the range

Running the above example shows the difference that RND'5
expres§ic}n makes. FigurE 5-i Shows a typic:al prir`tout produced
by this program. Yc}u c.an change the lengths of any of the loops
to create larger ar smaller sample Sizes. The secc)nd example
(See below) shows how yc]u can achieve dif f erent ranges of
integers by manipulating RNI) with TRUNC, ROUNI), and additional
numerals.

5-26 GRiDBA§IC Ref erence Maniial

u

u

u

a REM This pgm creates RNI} integer ranges
a PRINT: PRINT ''For the range i to 10 ...
0 FOR X = 1 Tl] 12
0 PRINT TRUNC(10*RND(I)+i),
a NEXT X
0
a
a
a
0
0
a
a

PRINT "For the range 0 to 10...
FOR Y = i T0 12
PBINT ROUND (lo*ENO (I)) .
NEXT Y

PRINT "For the range 87 to 95. ..
FOR Z = 1 T0 12
PRINT (ROUND(BtRNI)(I))+87) ,
NEXT Z

This program produceg the outpilt like the one in Figure 5-3.

Rii

n

For the range I to 1® . .
63

34

74

For the range 0 to 10. . .
98

09

67

For t,he range 87 t.a 95. . .
8e94

9487

9391

Figure 5-3. OutpLit of RN0 on Three Numeric Banges

Arithmetic and Logic 5-27

F=0UND

The ROUNI) f unction.

F-T

roTES

EXArRE

ROUND (expre55ion)

The ROUND f unctic)n takes a dec:imal riumber and converts it to an
integer. If the deEimdl portion is .5 ar greater the integer
iiic:reases by c)ne. If it is less, it drops to the next lower
integer. Negative numbers are rounded (-3.5 becomes -4).

NOTE: This +unction is identical to the 6RiDBASIC's CINT function
described earlier in this chapter. The existence of both
fun[tion5 enhances the compatibility of GRiDBA§IC with other
BA§IC'5. See the 5e[tion at the first of this chapter on Integer
Fllnc t i ons ,

100() INPUT "Enter any number and confirm", Decimal
1100 An5wer=F{OUND(Dec:imal)
1200 Pl]INT "The POUND integer is ";An5wEr :PRINT
1300 60T0 1000

5-28 6RiDBA§IC Reference tlanual

EE

u

u

§Gru

F-T

veTES

EXAtm

1

rl

ZiE

The sign fiinction.

§GN(expre55ion)

This funEticin returns the algebraic Sign ef an expreEi5icin. A
positive expre55ion retiirnB I, negative e>{pre55ion6 return -1,
and zero returns 0.

1{'00 PRINT
11(10 INPIJT; "The Sign of "; Niimber
1200 0N SON(Number)+2 GOT01300, 1400, 1500
1300 PRINT " i5 miiius {-)": 60T01(loo
1400 PRINT " i5 zero (no Sign)": GOT01000
150{1 PF`INT " is plus (+)": GOT0100()
1600 ENI)

This example tegts for 5iqn of number given it. Tlie §EN function
returns the appropriate niimber. The "+2" rai5e5 tliis number to a
I, 2, or 3 --all numbers that the ON t30T0 statement can Lise.
The result pciints to the [orrec.t answer line.

ArithmetiE and Logi[5-29

SIN

F-T

hDTES

EXAAFLE

The Sine f unction.

SIN(expression)

This function takes an expre5sit]n representing an angle in
radiaris and returns the Sine of that angle. CF3iDBA§IC always
evaluates this expresgii]n in fiill precision. To Convert +ron
degrees to radianE, multiply by pi/loo.

1000 INPUT "Enter angle (in degrees) and confirm'',Angle
1100 Rad5=Angle.(PI/loo)
12cO Calculation=SIN(Rad5)
1300 PRINT "The sine of ";Angles" degrees i5 "; Calculation:
PRINT
1400 80T0 1000

5-=0 0RiDBA5IC Ref erencE Manual

EI

Bu

u

SG!f=

F0unT

NOTES

EXA-

n

n

n

The square root function.

§QR (ex preg5i on)

This function retiirn5 the sqiiare root t]f an e}:pres§ion. The
value of the expre55icirt must be zero c}r greater.

1Cloo INPUTS "Square root of "; Number
1100 PRINT " is "; SGR(Number)
1200 PRINT: PRINT
1300 B0T0 1000
1400 END

Arithmetic: and LogiE 5-31

Tf}N

F-T

NOTES

EXArRE

The tangent function,

TAN (e%pres5i on)

This function takEs an Expre56ian representing an angle in
radians and retLirns the tangent of that angle. 6RiDBA§IC always
evaluates this expre55ion in full precision. To convert from
degrees to radians, multiply by pi/180.

1000 INPUT "Enter angle (in degrees) and conf irm",Angle
1100 Rads=Angle* (PI/lBO)
1200 Calc:ulation=TAN(Rad5)
1300 PRINT ''The tangent of ";Angle;" clegrees i6 "; Calculation:
PRINT
1400 60T0 1000

5-32 6Ril)BASIC ReferEnce Manual

BE

u

u

TRLJE=

FORAT

NOTES

EXArRE

r

rl

Ziil

The Floolean c:ongtant fl]r true.

TRUE

The constant TRUE has a value of -1. Statements can interact
with it in a number of ways. You Can assign its value te
variables, c}perate it on it logically, and print it.
below does all these things.

The prc)gram

1CIOO PRINT ''True=":TRUE; " and FalsE=";FALSE
1]00 INPUT "Type the ni`mber 5": A
12011 IF A=3 THEN El=TRUE ELSE B=NDT TF[UE

13{)a PRINT 8;
1400 IF B=FALSE THEN PFilNT " means you didn't typE 5" ELSE PRINT
" means you typed 3"
1500 PRINT:GOT0 11(10
16C)0 END

Line loot) prints the vallies of t3Ril}BASIC'5 two Boolean constar`ts.
Whenever you use TRLJE or FALSE. you use the [onstant's vali`e.
For example, depending on the value of A, line 120(I does one of
two things. It either as5ign5 -1 to a (TRUE) or applies NOT to
TRUE, changing the -1 to its c}ppl]5ite, a zero (a).

Arithmetic and Logi. 5-53

TF=UNC

The trunc:ate functicin.

F0fVAT

IUTES

EXArqlt

TBUNC (expression)

u

The TRUNC function converts a nunl)er (whether positive or
negative) into an integer not by rc}unding it, but by chopping off
anything to the riglit af the decimal pciint. TRUNC acts like
another integer funEtion`, FIX. See the article on integer
functicin5 at the f irst of this Chapter. Also [oopare TRUNC to
the FIX and ROUNI} functions.

1000 INPLIT "Enter any number and conf irm.., I)eEiiiial
1100 Answer=TRUNC (Deci mal)
12()0 PRINT "The TRIINC integer is ";AnBner :PRINT
1500 GOT0 1000

5-54 GRiDBA§IC Referen[e Manual

u

u

X0F=

F-T

NOTES

EXArfLE

ill

Zii

n

The exclusive-OFZ logical c)perator.

expressior`l XOR expres5ion2

XOR yields a true if just one jList one of the expressicin5
evaluates as triie, but not if bc)th c)r neither are true. Table
5-6 Shows this.

A XOR El

Table 5-6. The XOR Truth TalJle

1000 PRINT "Separate the two numbers with a cc)mma":PRINT
1100 INPUT "Type two numbers between 1 and 5"i A,B
1200 IF A=3 XOR 8=4 THEN PRINT ''You win!" ELSE F'RINT .'Try again"
1300 PRINT:GOT01100
1400 END

With XOR you can c]nly win by getting just one of the pair t]f
numl]er5 EorreEt --either the 3 in the f irst place or tlie 4 in
the second. If ylJu type "3,4" the program tells you to "Try
aoain. "

Arithmetic and Lc]qic 5-:`5

u

u

u

n

ZiiE

CHAPTEF! §IX= §TRIN6 FLAVTIO^B

This chapter de5cribe5 6F`iDEIASIC'5 string furictions. String functions perform
operations c)n sequences of characters 5pecif ied in programs. A String is any
5equenc:e of characters. All of these fllnction5 reqiiire an input parameter c)r
argument enclosed in parentheses.

A word on nomenclature. A number of the String functicln names end with the
dcillar sign (S). rlost proqrammer5 "pronounce" this symbol in either of twc}
ways. Some Say "dollar"; others say "String." Thus the Statement LEFTS i5
called both "left dollar" and ''left string." Take your pit:k.

String Fl`nc:tions 6-i

f}§E

FofvAT

NDTES

EXA-

The A§CII function.

A§C(stringS)

A§C takes the i ir5t [harac:ter of stringS and returns that
character's A§CII code (a decimal, nLimeri[value). This is the
inverse of the CHRS function, which c:cinvert5 an A§CII code to a
character (See below). "A§CII'' stands for "American Standard Code
tor Information Exchange. "

If the String has a length of zero (no charac:ter5 in the String), an
error oct:urg.

1000 INPUT "Press a key and cc]nf irm",TextS
1100 LET Code=A§C(TextS)
1300 LET LetterS=CHRS (Code)
1SOO PRINT "The A§CII code for ";LetterS;" is "!Code
1400 PRINT
1500 B0T0 1000
1600 END

u
ThlB example convert. text (including nuober5, and pun[tuatien, and
other characters into their ASCII codes. Note that though the inplLt
variable (TextS) i5 a String variable, A§C returns a numeric value,
be[ause each A§CII code is a nilmber.

EE

6-2 0RiDBA§IC Reference manual

C=HRS

F-T

NOTES

EXAMPLE

ZiE

1

EiiE

The character String function.

CHRS (ex pressi on)

This function [anverts an expression representing an ASCII code (in
decimal) tc} its one charac:ter equivalent. The expre55ion must be a
value in range of a to 255. This function is the inverse of ttie A§C
function, which perfarmg ASCII-to-riumeric conver5iorL.

1000 INPUT "Enter an A§CII code and [anf irm", Ascc)de
1100 LET LetterS = CHRS(A5code)
1200 PRINT A5cade;" i5 the A§CII code for "iLetterS
1300 PRINT
1400 60T0 1000
1500 END

This program tal(e5 any Asell code (in decimal) from a to 255 and
prints the c:haracter represented by the code. Note that line ilo(I
assigns the resulting character te a String variable, LetterS
(iwhether I]r not it'5 a number).

String Functic)n5 6-3

I lusTF=

The in string function.

FOFVAT

veTES

EXAJRE

IN§TR (I expre55i on ,] 5ource§tr i ngs , f i nd§tr i ngs)

The lNSTR (ciften called ''in string'') function locates a specif iecl
string (f ind§trinqS) witliin another string (source§tringS) and
retilrns the character position cif the f irst act:urence of the string.
IN§TR differentiates between upper and lower Ease; specify
characters acc:ordingl y.

The Optional E}:pre55ion tells the funEtion how many characters tlJ
5h'ip (from the left} before before beginning its 5ear[Ii. Include
this expression when you want to move past the String just located
to f ind another occuren[e af the Same string.

IN§TR retl`rns a zero (0) iwhen:

I The value of expression i5 greater than the length of
5our[e§trin9S

I §c}ur[e§tringS is null

• It cannot f ind f ind§tringS.

If find§tringS ig null, INSTR return51 ar expresgion (if included).

1000 LET §ami]leSa"The dollar the Snowman the Cat"
1100 LET AS="he": Let BSB"the": Let C.g''man'': LET D.=`'dall'': LET
ES="cat": LET F=6
1200 LET Po5itionl=INS"(13.§amF)1es,BS)
1300 LET Position2=IN§TR(''weather",BS)
14Clo LET POSITI0N3=IN§TR(F, ''Woebegone" , "e")
1500 LET PO§ITI0N4=lNSTR(§ampleS, ''now")
1600 PRINT Po5itionl
1700 PRINT F'cisition2
180rJ F'ftlNT Positions
1900 F.FuNT Position4
=OC'O END

6-4 GRi DBA§IC Reference Manual

`-`

EE

EI

a

rl

Ziil

This program yields fc}ur numberg:

The example illu5trate5 two facts. First, expression, find5trings,
and sourEestrir`gS can occiir a5 variable5 and/or values (whether
string or numeric) in the game 5peci+ication. §ec:and, expresgion
views the nLimber of [hara[ters in 5oilr[e5trings a5 absolute.

For example, the expression in line 1400 tells]N§" to position
itself at the "g" in "Woebegone" and search far "e" (oiie character
past the second"e"). In this cage, it returns 9 --the position of
the last "e" --not 3, which it woilld if it Started counting at one
from each position.

Note too, that if you Searched for ES (cat) within Samples, INSTR
would return a zero. The reason: The "Cat" within SampleS has an
upperca5e "C. "

String Functions 6-5

L.EFTS

The left 5trinq function.

F-T

NOTES

EXArFLE

LEFTS (5tr i ngS , expre5si on)

This function returns the leftmo5t Character(s) from a specified
string. The function c:oiint5 in from the left end of the string by
the number of characters 5pe[if led in the e>:pres5ion. For example,

LEFTS (Compass Computer System, 7)

yields the string "Compa55."

If the value of expre55ion is greater than the length of the string,
the entire String i9 returned. If the value of expre55ion i5 zero,
a null string (no characters) is returned.

1000 LET §ampleS="dollar toy pizza book tree home"
1100 PRINT ''The String i6 ";§alnpleS;I""
1200 PftlNT
1300 INPUT "Take hciw many letters from the left"i Number
1400 LET Someletters=LEFTS (Samples, Number)
1500 PBINT "LEFTS(§ampleS, "!Number;") ig "; §t]meletters;""
1600 60T0 1200

6-6 GRil)BASIC Reference Mariual

u

u

LEIu

FofunT

ExfuRE

rl

A

EiEI

The length function.

LEN returns the ni`mber c}f charac:ter5 in a Spec:if led string and
thereby its length. All characters in the String, including 5igng,
c!ecimal points, blankg, and nan-prirltat)lE characters, are counted.

LEN (str i ngS)

lo{lc) INPUT "Type Some characters and conf irm'`; §tuffS
1100 PRINT "You entered "; LEN(§ti`ffS):" charBc:ter5 that time."
1200 PRINT
1300 GOT0 1000
140{' ENI)

This example 5how5 that the LEN function coilnts the niimber of
characters in a 5tring. (Also see the e}{ample for the §TRS
function.)

Strir`g Functic)ns 6-7

rl I DS

F-T

neTE§

EXArRE

The mid string function.

MIDS (9tri noS, I I , J J)

u

The MII)S function returns a spe[if led portion of a 5tririg. The
parameter I specif ies the first charac:ter (c:ounting from the left
end of the string) that MII)S returns. The optional parameter J
specif ies the total number of characterg the function Should return.
Far e}.ample.

MIDS ([copa55 Computer system,9,a)

yields the 5tring` "Computer''-

If J is omitted, or if there are fewer than J characters to the
right of the lth character, all characters from I to the right erid
of the string will be returned.]f I is greater than the length of
the string or if J is zero, HIDS returng a null String, that i9, a
String with no c:haracter9 in it.

I-,I

B1

11100 LET §ampleS="dc}llar toy pizza boc}k tree home"
1100 PRINT "The String is "';§ampleS;""
1200 F'RINT
1300 INPUT "Go how far in from the left"5 Number
1400 INPUT "And take hcw many letters"iLetterg
15110 LET SomeletterS=MIDS (Sampl eS,Niimber,Letters)
1600 PFINT "MII)S(§amplES,"iNumberi ", "; Letterss") is ";
§omel etterS= " a "
17(10 B0T0 1200
1800 ENI)

6-8 GRil)BASIC Referen[e ManL`al

a

n

Ziil

F= I GHTS

The right String function.

FqfvAT

veTES

EXA-

R I GHTS (5tr i ngS , ex pres5i on)

This function counts frc)in the right end of a string of charac.terg to
return a number of characters. The expressic]n returns the number of
characters specified by expression. If the `taliie of expre55ion i5
greater than the length cif the String, the entire string is
retiirned. If the value of e}:pres5ion is zero, a null String (no
characters) i5 returned.

1000 LET SampleS="clollar tc]y pizza book tree home"
1100 PRINT ''The string i5 ";§aoples;""
1200 PRINT
1500 INPUT ''Take how may letters from the right"; Number
1400 LET §omeletterS=R16HTS (Samples. Ni`mber)
1500 PRINT '`R16HTS(SampleS,";Number; ") i5 ": Sc}melettErs; ""
1600 B0T01200: REH if you..re going to do this a lot, 60T011{)a
instead

String Func:tion5 6-9

SFJf}CES

The space string function.

F-T

NDTE§

EXA-

§PACES (ex press i on)

The §PACES f unction returr`5 a string consisting of spaces. The
expression 5pecif ie5 the number of 5pace5.

lcIO0 INPUT .'How many 5pa[es'': Number
1100 LET BlankS=SPACES(Number)
1200 PRINT Nimber; " 5pace9 lie between the asteri5k5`': PRINT
" I " i 81 anks! „ I „

1500 PRINT
1400 GOT0 1000
1500 ENI)

6-10 GRiDBA§IC Reference Manual

EE

u

u

STF=S

FOFVAT

veTE§

EXA4RE

fl

n

Ziil

The §-T-R String function.

§TRS (Ex pressi on)

The STRS function converts the value of a numeric expression intc} a
String, so that you can perform 5tring5 (rattler than numeric)
Operations On it.

lcIO0 INPUT "Type a number"i Numberl
1100 INPUT "And ant)ther to ml`ltiply it by"; Number2
12110 LET CS=§TRS (Numberl *Number2)
1300 PFINT "Ttle answer i5 .';CSi". Length of this string is ";LEN(CS)
1400 PRINT
1500 60T0 1000
1600 END

This example takes two riumber5 and converts their produc.t to a
string (line 1200). The fact that LEN, a String functic}n operates
on prc]diict, proves this i5 a string, not a numeric, constant (line
1300) .

String Functions 6-11

STR I ItlGS

The string functic)n.

Fa"T

hoTE3

EXArfLE

§TRIN6S(expression, A§CIIc:ode)
§TBINBS(e>:pres5ion. 5tringS)

This function returns a string whose chara[ter5 all have the Same
A§CII Code. The value of expre55ion defines the length of the
5trin9.

You Specify the character returned by giving its A§CII col]e (in
decimal) or by giving a string. §TftlNOS returng only the first
character c)+ this String.

1000 Cc]de§ampleS=STRINGS (lo, 42)
1100 PRINT "The String uging an ASCII code i§ ''icad.§ampleS
!200 PRINT
13(10 LET A.="Hello"
1400 Firgtchar.-§TRINOS (10, AS)
1500 PRINT "The Sample taking the first character ig ''i FirstcharS
1600 ENl)

The example 5howg the §TRINGS function with both arqumentg. Line
1000 takes the ASCII argiment arid prints 10 agteri9kg ln line 1100.
Line 1400 takes the firgt character of AS (liellc)) and print. it 10
times in line 1500. NOTE: tlie 10 in bc]th print statementg i§ the
f irst argument in eat:Ii STRINGS clef initian.

6-12 8PiDBASIC Beference Manual

u

RE

U

Vf>L

FtrmT

NOTES

EXArRE

n

n

Ziiil,

The valL`e func:tion.

\/AL (5tr i ngS)

This func:tion returns tlle numeric: value c)f a Spec:if lid string. The
String 5hoi`ld c:ompri5e nothing other than leading blank(5). a sign,
and a niimber (the blank(s) and sic)n needn.`t be present).

VAL strips of f any leadinq blanks from the 5tring. If the f irst
non-blank c:haracter i5 anything except a plus Sign (+), minil5 5iqn
(-). or a ni`meric digit, VAL returns a zero (11). If the String
contains anything besides numeric digits, it also returns a Zero
(0).

lot:)0 INPUT "Type a number"; Numberl
1100 INPIJT "And another to multiply it by"; Niimber2
1200 LET CS=STRS(Numberl*Nlimber2)
1301-) PRINT "Ttie answer is ";CS:". Length c}f this string is ":LEN(CS)
1400 LET Re5iilt=VAL(CS) /Numberl
150C) PRINT "I}ividing by the flrst ylelds the second: ";Result
16Clo F.F{INT

1700 GOT0 1000
18':10 END

This example tL`rns a number into String (line 1200). and engac)E.5 \,/'AL
in line 1400 to turn the String ni`mber bat:k Into a nilmber that
numeric ciperators can handle. NOTE: lJAL.`5 coiinterpart is STRS (See
line 1200).

Strinci FLinctions 6-15

u

u

iii

iiE

ZiE

CI+AP'TER SE\AENI Il`FUT/OUTptJT STATEHEI`lTS

The input/output 5tatement5 discussed in this chapter transfer data tc) and
from memory, the realtime EloEk, the I(eyboard, and the sc:reen. For
information en Sequential file I/0. see Chapter Eight. For random a[Ees5 +ile
I/0, See Chapter Nine.

Input/'Output Statements 7-i

C0IqllA
The comma character (.) formats output tc] the screen.

Fqf"T

veTES

expression, expre65ion[, I

Whether in an INPUT Statement or a PRINT statement, the ct]mma
Simultaneously links Blement5 in a series and keeps them Separate.
The comma differs from the senicolon in that it [aii5e9 each element
to print at predetermined tab position. The Comma i]lacEs each
expression in one of four absolute fields --at columns a, 15, 311.
and 45.

Within a PRINT statement, a cc)mma following the last elelllent in a
list caiise5 si`ppre5sion of the Carriage return and line feed
characters that the PRINT Statement nc]rmally issues after its
expres§ion{s). Instead, the expres5ion5 print at the apt)ropriate
tab f ield.

Placing the comma before the first e^'pres§ic)n in a PRINT Statement
Causes the e^.pre5sion to print at the 5ecc)nd field. Likewise, two
commas preceding an expression cause printing at the third f ield,
and so Dn. Fc)r example:

1800 PFuNT „"Third tab"

Placing the ccimma between all INPUT string and its variable,
9uppre5se9 the qiie5tion mark (?) normally issued by the INPUT
5tatenent. For example:

1500 INPUT "Yoiir name please", NameS

You can request multiple ltemB with an INPUT Statement, if you
e®parate the State/nent'e vAri.blel with comma.. For example,

1600 INPUT "Pl.I.e .nt.r thr.e numbers", A, a, I

NOTE! Th. re.ponle to thi. must .leo Separate each item with a
coma. For example,

54' 98.01, I

When Sending data to the Epson printer, yoi` must supply tab position
information for the Comma to work correctly. Otherwise, you won..t
get the 5pa[e§ between Eoluon6 that you expec:t.

7-2 GRiDBASIC Reference Manual

u

u

EI

n

n

n

EXARE

You must follow the PRINT# Command with the file tag number, an E§C
D (represented by CHRS(27)+"D") and the cc)lumn number of each tab
prec:eded by the [HRS statement. Concatenate these tab ptJ5itic)n5
with the plus sign (+). All such statements miist end with the null
cliaracter, CHRS(0). Do NOT exceed an 80-character linE.
t:ommand assigning 15 character-wide tabs follows:

PRIN" 1, CHRS(27)+''D"+CHRS(15)+CHRS(30)+...+CHRS(0)

1000 INPUT
1100 INPUT
1200 PFilNT
130t' PRINT
1400 PRINT
1500 PRINT
1600 PRINT
17C'O ENI)

"Yoiir name please: ", Names
"Three numbers", A, a, C

"Hellc} there", NameS, "3", "AlbErt"
•'A very long string", ''of ",

A' a, E
"Third tab"

An example

Ttii5 example illustrates what commas Can do irt both INPLJT and PRINT
statements. The comma in Line 1000 siippres5es INPUT'5 question
mark. In line 1100, c.ommas separate variables fc]r INPUT.

Line 1300 Shows the tab zones set up by the comma. Note in Figi`re
7-1 belc}w that when a String Exceeds the 15-Character width set lip
by the comma that the next string appears in the ne}:t zone over.
The first String does nc)t c:c)llide with the 5Econd.

The comma at the end of line 1400 suppre5se5 the Earriage
retiirn-line feed at the end of that line, sc} that line 1400 and
1500.`s tab zones become continiloil5. The two [omma5 before the
expression in linE 16Ctll pi`sh the expression c}ne tab each ao that the
string "Third tab" prints at the third tab.

Your name please: John
Three numbers 8,-912765, .©8al243

liel lo t.here John
f] i.erg long string
-912?65 0. 0@B1243

Third tab

fllbert
8

Figure 7-1. Examples of Colrma Fermatting

Input/Output Statements 7-3

DflTES
The date function.

FrmT

NOTES

EXAbpLE

DATES

I)ATES returns the current date from the Conpa3s Computer 5y5tem's
real-time clock. The date i5 an eight character string in the form
mm/dd/yy where mm is the month (00 tc} 12), dd is the day of the
month (00 through 31) and yy i5 ttie year (00 through 99). NOTE:
These charac:ters are string, not numeric c:haraEters. For the
program to use them numerically, you miist convert them to numbers
(see Chapter Six, the VAL statement and the example below).

1000 PFilNT "The date is "; DATE$
1100 LET MonthS -LEFTS(I)ATES,2)
1200 IF LEFT®(MonthS,1)I"O" THEN LET Month.gRIBHT.(ManthS,i)
1500 PRINT "The number of the month is "i Month$
1400 LET MONTH=VAL(MonthS)i LET AS="The name of the month is "
1500 0N Month B0T0
1600 ,1700 ,1800,1900, 2000, 2100, 2200, 2300, 24011, 2500, 2600, 2700
1600 PRINT AS; "January":END
1700 PF(]NT AS; "February"=ENI)
1800 PRINT AS;"March":END
1900 PRINT AS;"April":ENI)
2000 PRINT AS; "May":ENI)
2100 PRINT AS;"June":END
2200 F'RINT AS;"July":END
2300 PRINT AS; "Augii5t":END
2400 PRINT AS; "September":END
251)a PRINT ASi "October'`:ENl)
2600 PRINT ASi "November":ENI}
2700 PRINT AS! "December":END

This example prints the current date in line 1000. It then remave5
the ''0" from the front of all single digit month rii`mbers and prints
the number of the month (lines 1100-1300). The rest of the example
u5e5 the ON GOT0 statement 5o that the month's number can c:ause the
month..s name tD print.

To dc) this, we c:onvErt the month nllmeral-a5-String charac:tar to a
numeral with the VAL Statement (see Chapter 6). You Can incorporate
this program as a 5ubroutine where you want a nicely formatted date.

7-4 GF{il}BA§IC Referent:E Maniial

u

u

